PENGEMBANGAN E-MODUL BERBANTUAN WOLFRAM MATHEMATICA UNTUK MENINGKATKAN KEMAMPUAN BERPIKIR KRITIS SISWA

SKRIPSI

Oleh:

(Grahita Sukma Dewi) 18310075

PROGRAM STUDI PENDIDIKAN MATEMATIKA FAKULTAS PENDIDKAN MATEMATIKA ILMU PENGETAHUAN ALAM DAN TEKNOLOGI INFORMASI

UNIVERSITAS PGRI SEMARANG

2022

PENGEMBANGAN E-MODUL BERBANTUAN WOLFRAM MATHEMATICA UNTUK MENINGKATKAN KEMAMPUAN BERPIKIR KRITIS SISWA

Skripsi

Diajukan kepada Universitas PGRI Semarang untuk memenuhi salah satu persyaratan dalam menyelesaikan Program Sarjana Pendidikan Matematika

Oleh:

(Grahita Sukma Dewi) 18310075

PROGRAM STUDI PENDIDIKAN MATEMATIKA FAKULTAS PENDIDIKAN MATEMATIKA ILMU PENGETAHUAN ALAM DAN TEKNOLOGI INFORMASI UNIVERSITAS PGRI SEMARANG

2022

HALAMAN PERSETUJUAN

Skripsi Berjudul

PENGEMBANGAN E-MODUL BERBANTUAN WOLFRAM MATHEMATICA UNTUK MENIGKATKAN KEMAMPUAN BERPIKIR KRITIS SISWA

Yang Distaun oleh (Grahita Sukma Dewi)

NPM 18310075

Telah disetujui dan siap diujikan.

Semmang 23 John 2022

Pembimbing I,

Dr. Nizaruddin, M.Si

NIP. 196803251994031004

Pembimbing II,

Yanuar Hery Murtianto, S.Pd., M.Pd.

NPP. 13880E407

HALAMAN PENGESAHAN

Skripsi Berjudul

PENGEMBANGAN E-MODUL BERBANTUAN WOLFRAM MATHEMATICA UNTUK MEINGKATKAN KEMAMPUAN BERPIKIR KRITIS SISWA

Grahita Sukma Dewi

NPM 18310075

Telah dipertahankan di depan Dewan penguji pada haridan dinyatakan telah memenuhi syarat untuk memperoleh gelar Sarjana Pendidikan

Supandi, S. Si., M. Si
NPP 097401245

Anggota Penguji

1. Dr. Nizaruddin, M. Si
NIP. 196803251994031004

2. Yanuar Hery Murtianto, S.Pd., M.Pd
NPP 138801407

3. Agnita Siska Pramasdyasari, M.Pd., M.Sc
NPP 148801466

PERNYATAAN

Saya menyatakan bahwa yang tertulis dalam skripsi ini benar-benar hasil karya saya sendiri, bukan jiplakan dan/ atau karya tulis orang lain, baik sebagian atau seluruhnya. Pendapat atau temuan orang lain yang terdapat dalam skripsi ini dikutip atau dirujuk berdasarkan kode etik ilmiah.

Semarang,2022

Grahita Sukma Dewi NPM. 18310075

MOTTO DAN PERSEMBAHAN

MOTTO

- ➤ "Dan berbuat baiklah, karena sesungguhnya Allah menyukai orang-orang yang berbuat baik" (Qs. Al-Baqarah: 195)
- ➤ "Musuh terbesar dalam mencapai tujuan adalah penundaan. Banyak penundaan yang disebabkan oleh ketakutan. Takut gagal, takut ditolak, takut kecewa, dan segala macam ketakutan yang lain"- Jaya Setiabudi

PERSEMBAHAN

Alhamdulillah atas segala puji bagi Allah SWT yang telah melimpahkan rahmat dan hidayah-Nya. Dengan penuh rasa syukur atas kenikmatan dan karunia yang diberikan sehingga skripsi ini dapat saya selesaian, saya persembahkan skripsi ini kepada:

- ➤ Kedua orang tua saya Bapak Purwadi dan Ibu Siti Muslikhah yang telah memberikan kasih sayang, dukungan, motivasi, pengorbanan, serta doa tulus yang tiada hentinya kepada saya dalam proses menyelesaikan skripsi.
- Kakak dan adik saya, Laras Etika Puteri dan Wishnu Nata Adibrata yang selalu memberikan dukungan dan bantuan kepada saya dalam menyelesaikan skripsi.
- ➤ Teman-teman baik saya Nanda, Lina, dan Novita Zaeni yang selalu memberikan bantuan, semangat, dan motivasi dalam menyelesaikan skripsi ini.
- ➤ Rekan-rekan seperjuangan, khususnya mahasiswa Pendidikan Matematika kelas B dan mahasiswa Angkatan 2018 Universitas PGRI Semarang.
- Keluarga Besar Himpunan Mahasiswa Program Studi Pendidikan Matematika Universitas PGRI Semarang yang telah memberikan banyak ruang dan kesempatan untuk belajar.
- ➤ Almamater kebanggaan Universitas PGRI Semarang.

PENGEMBANGAN E-MODUL BERBATUAN WOLFRAM MATHEMATICA UNTUK MENINGKATKAN KEMAMPUAN BERPIKIR KRITIS SISWA

Grahita Sukma Dewi

Pendidikan Matematika Universitas PGRI Semarang

grahitasd@gmail.com

ABSTRAK

Kemampuan berpikir kritis perlu untuk dikembangkan karena merupakan keterampilan yang harus dikuasai di abad 21. Namun kenyataannya, kemampuan berpikir kritis siswa masih rendah. Dalam penelitian ini bertujuan untuk mengembangkan suatu media pembelajaran berupa emodul berbantuan wolfram mathematica yang layak (valid) digunakan dalam proses pembelajaran. Penelitian ini menggunakan model pengembangan ADDIE dengan tahapan analisys, design, development, implementation, dan evaluation. Media yang dikembangkan sebelum diuji cobakan divalidasi oleh validator ahli media dan ahli materi dengan hasil penilaian ahli media sebesar 84% dengan kategori "Sangat Baik" dan hasil penilaian ahli materi sebesar 88% dengan katagori "Sangat Baik" dengan artian e-modul layak (valid) digunakan dalam proses pembelajaran. Dari hasil uji coba penggunaan e-modul dapat disimpulkan bahwa e-modul efektif dalam meningkatkan kemampuan berpikir kritis siswa dilihat dari hasil ketuntasan berpikir kritis siswa ≥ 75%, hasil berpikir kritis kelas eksperimen lebih baik dari kelas kontrol, dan terjadi peningkatan kemampuan berpikir kritis yang dihitung menggunakan uji N-Gain

Kata Kunci: Mathematica, E-Modul, Berpikir Kritis

KATA PENGANTAR

Dengan memanjatkan puji dan syukur kepada Allah SWT yang senantiasa memberikan rahmat dan karunianya sehingga penulis dapat menyelesaikan skripsi yang berjudul "Pengembangan *E-Modul* berbantuan *Wolfram Mathematica* untuk Meningkatkan Kemampuan Berpikir Kritis Siswa". Skripsi ini di susun untuk memenuhi salah satu prasyarat dalam menyelesaikan program sarjana Pendidikan Matematika di Universitas PGRI Semarang. Penulis menyadari dalam penyusunan skripsi ini tidak dapat terselesaikan tanpa bantuan dari pihak-pihak yang membantu dan mendukung dalam penyusunan skripsi ini. Oleh karena itu, penulis mengucapkan terima kasih kepada:

- 1. Dr. Sri Suciati, M.Hum selaku rector Universitas PGRI emarang.
- Supandi, S. Si., M. Si., selaku Dekan Fakultas Pendidikan Matematika Ilmu Pengetahuan Alam dan Teknologi Informasi.
- 3. Dr. Lilik Ariyanto, S.Pd., M.Pd., Ketua Program Studi Pendidikan Matematika Universitas PGRI Semarang.
- 4. Dr, Nizaruddin, M. Si., Dosen Pembimbing I yang senantiasa memberikan bimbingan, arahan, dan bantuan dalam penulisan skripsi.
- 5. Yanuar Hery Murtianto, S.Pd., M.Pd., Dosen Pembimbing II yang senantiasa memberikan bimbingan, arahan, dan bantuan dalam penulisan skripsi.
- 6. Drs. Kuncoro Pujiwarto, kepala sekolah SMP Negeri 2 Weleri yang telah memberikan izin untuk melaksanakan penelitian.
- 7. Titik Setyawati, S.Pd. guru mata pelajaran matematika SMP Negeri 2 Weleri yang telah memberikan arahan dan bantuan dalam proses penelitian.
- 8. Siswa-siswi kelas VIII F dan G SMP Negeri 2 Weleri yang telah bersedia membantu peneliti pada saat penelitian.

9. Bapak, ibu, dan segenap keluarga saya yang telah memberikan motivasi,

semangat, dukungan, dan doa selama perkuliahan hingga penulisan skripsi

ini dapat terselesaikan.

10. Segenap Dosen Pendidikan Matematika Universitas PGRI Semarang yang

telah memberikan bekal ilmu yang bermanfaat.

11. Teman-teman kelas B Pendidikan Matematika Angkatan 2018 Universitas

PGRI Semarang yang selalu memberikan semangat dan dukungan kepada

penulis.

12. Seluruh pihak yang telah membantu penulis dalam menyelesaikan skripsi

yang tidak dapat penulis sebutkan satu persatu.

Semoga amal dan kebaikan yang telah diberikan kepada penulis

memperoleh imbalan yang lebih dari Allah SWT. Penulis menyadari bahwa dalam

menyusun skripsi ini masih jauh dari kata sempurna dikarenakan keterbatasannya

pengetahuan dan pengalaman yang dimiliki oleh penulis, makan dari itu penulis

mengharapkan segala bentuk kritikan dan saran yang bersifat membangun dari

berbagai pihak. Diharapkan skripsi dapat menjadi manfaat bagi pembaca dan

semua pihak khususnya dalam bidang Pendidikan matematika.

Semarang,

Penulis

Grahita Sukma Dewi

NPM. 18310075

ix

DAFTAR ISI

HALA	LAMAN PERSETUJUANError!	Bookmark not defined.
HALA	LAMAN PENGESAHAN	iii
PERN	NYATAAN	iv
MOT	TTO DAN PERSEMBAHAN	vi
ABST	STRAK	vii
KATA	ΓA PENGANTAR	viii
DAFT	FTAR ISI	X
DAFT	FTAR TABEL	xii
DAFT	FTAR GAMBAR	xiv
DAFT	FTAR BAGAN	xvi
DAFT	FTAR LAMPIRAN	xvii
BAB	B I PENDAHULUAN	1
A.	Latar Belakang	1
B.	. Rumusan Masalah	4
C.	. Tujuan	4
D.	. Manfaat	5
BAB	B II TELAAH PUSTAKA	6
A.	. Landasan Teori	6
1	1. Penelitian Pengembangan	6
2	2. Media Pembelajaran	8
3	3. Modul	9
4	4. E-modul (modul elektronik)	11
5	5. Wolfram Mathematica	12
6	6. Kemampuan Berpikir Kritis	14
7	7. Canva	18
8	8. Efektivitas	19
B.	Kerangka Berpikir	21
C.	. Hipotesis Penelitian	22
D.	. Produk Yang Akan Dihasilkan	22
BAB	B III METODE PENELITIAN	23

A. Studi Pendahuluan	24
1. Analisis (analisys)	24
2. Design	24
3. Development	24
4. Implementation	25
5. Evaluation	25
B. Rancangan Produk	25
1. Desain Produk	25
2. Validasi Ahli	25
3. Revisi produk	26
C. Ujicoba Produk	27
1. Subjek Penelitian	27
2. Teknik Pengumpulan Data	27
3. Instrumen Penelitian	29
4. Analisis Interpretasi Data	32
5. Revisi Produk	42
BAB IV HASIL PENELITIAN DAN PEMBAHASAN	43
A. Hasil Penelitian	43
1. Analisis (Analysis)	43
2. Perencanaan (Design)	44
3. Pengembangan (Development)	57
4. Implementasi (Implementation)	67
5. Evaluasi (Evaluation)	77
B. Pembahasan	78
BAB V KESIMPULAN DAN SARAN	84
A. Kesimpulan	84
B. Saran	85
DAFTAR PUSTAKA	86
I AMDID AN	0.4

DAFTAR TABEL

Tabel 2 1 Perbedaan Modul Elektronik Dan Modul Cetak	. 12
Tabel 2 2 Indikator Menurut Facione (2011)	. 15
Tabel 2 3 Indikator Berpikir Kritis Menurut Rahayu & Alyani (2020)	. 15
Tabel 2 4 Indikator Berpikir Kritis Menurut Fatmawat Et Al. (2020)	. 16
Tabel 2 5 Indikator Yang Digunakan Dalam Penelitian	. 16
Tabel 2 6 Fitur-Fitur Canva Menurut Purba & Harahap (2022)	. 18
Tabel 3 1 Tabel Skala Likert	. 26
Tabel 3 2 Tabel Skala Likert	. 28
Tabel 3 3 Range dan Kriteria Kuantitatif Program	. 28
Tabel 3 4 Klasifikasi Gain (g)	. 41
Tabel 3 5 Kategori Tafsiran Evektifitas N-Gain	. 41
Tabel 4 1 Hasil Analisis Kebutuhan Peserta Didik	. 44
Tabel 4 2 Validator Ahli Media	. 57
Tabel 4 3 Penilaian Aspek Ahli Media I	. 58
Tabel 4 4 Saran Perbaikan Ahli Media	. 58
Tabel 4 5 Validator Ahli Materi	. 61
Tabel 4 6 Penilaian Ahli Materi	. 61
Tabel 4 7 Saran Perbaikan Ahli Media	. 63
Tabel 4 8 Hasil Analisis Validitas Soal Uji Coba	. 68
Tabel 4 9 Hasil Analisis Taraf Kesukaran Soal Uji Coba	. 69
Tabel 4 10 Hasil Analisis Daya Pembeda Soal Uji Coba	. 70
Tabel 4 11 Hasil Uji Normalitas Data Awal	. 71
Tabel 4 12 Hasil Analisis Uji Homogenitas Data Awal	. 72
Tabel 4 13 Hasil Analisis Uji T Dua Pihak	. 73
Tabel 4 14 Uji Normalitas Data Akhir	. 74
Tabel 4 15 Uji Homogenitas Data Akhir	. 75
Tabel 4 16 Hasil Analisis Uji T Pihak Kiri	. 76
Tabel 4 17 Hasil Analisis Uji T Satu Pihak Kanan	. 76

Tabel 4 18 Hasil Analisis Uji N-Gain77	7
--	---

DAFTAR GAMBAR

Gambar 3 1 Tahapan Model ADDIE	23
Gambar 4 1 Halaman Utama Wolfram Mathematica 12	45
Gambar 4 2lembar Kerja Wolfram Mathematica 12	46
Gambar 4 3tampilan Toollbar Pallets Di Wolfram Mathematica 12	46
Gambar 4 4tampilan Toollbar Format Di Wolfram Mathematica 12	47
Gambar 4 5tampilan Toollbar Help Di Wolfram Mathematica 12	47
Gambar 4 6 Judul Materi	48
Gambar 4 7 Peta Konsep	49
Gambar 4 8 Materi SPLDV	49
Gambar 4 9langkah Penyelesaian Menggunakan Wolfram Mathematica	50
Gambar 4 10hasil Penyelesaian Menggunakan Wolfram Mathematica	50
Gambar 4 11 Latihan Soal	50
Gambar 4 12tampilan Awal Canva	51
Gambar 4 13Tampilan Beranda Canva	52
Gambar 4 14tampilan Saat Akan Membuat Design Awal	52
Gambar 4 15 Background Yang Digunakan	53
Gambar 4 16 Tampilan Background Yang Digunakan	53
Gambar 4 17tampilan Tombol Di Halaman Utama	54
Gambar 4 18tampilan Tautan Pada Tombol	54
Gambar 4 19tampilan Materi	55
Gambar 4 20 Tampilan Video Youtube	56
Gambar 4 21 Tampilan Tombol Home	56
Gambar 4 22 Halaman Awal Sebelum Revisi	59
Gambar 4 23 Pemberian Keterangan Untuk Ke Halama Selanjutnya	59
Gambar 4 24 Tampilan KI KD Sebelum Revisi	59
Gambar 4 25 Tampilan KI KD Setelah Revisi	59
Gambar 4 26 Tampilan Petunjuk Sebelum Revisi	59
Gambar 4 27 Pembahan Tombol	59
Gambar 4 28 Gambar Tampilan Halaman Utama Sebelum Revisi	60
Gambar 4 29 Penghapusan Tombol Halaman Utama	60

Gambar 4 30 Penggunaan Wolfram Mathematica Belum Maksimal	64
Gambar 4 31 PEMBERIAN Penyelesaian Menggunakan Wolfram Mathematica	64
Gambar 4 32 Peletakan Latihan Soal Kurang Tepat	65
Gambar 4 33 Peletakan Latihan Soal Setelah Metode Penyelesaian SPLDV	65
Gambar 4 34 Soal Sebelum Revisi	66
Gambar 4 35 Soal Setelah Revisi	66

DAFTAR BAGAN

Doggan 2 1 Vanamalra D	erpikir	\sim
рауан и кеганука р	erdikir	12
2 0 5 0 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	• - p = = = = = = = = = = = = = = = = = =	_

DAFTAR LAMPIRAN

Lampiran 1	95
Lampiran 2	96
Lampiran 3	97
Lampiran 4	98
Lampiran 5	99
Lampiran 6	100
Lampiran 7	102
Lampiran 8	115
Lampiran 9	124
Lampiran 10	125
Lampiran 11	129
Lampiran 12 a	132
Lampiran 12 b	142
Lampiran 13 a	143
Lampiran 13 b	153
Lampiran 14	154
Lampiran 15	157
Lampiran 16 a	159
Lampiran 16 b	161
Lampiran 16 c	163
Lampiran 16 d	165
Lampiran 17 a	167
Lampiran 17 b	168
Lampiran 18 a	170
Lampiran 18 b	171
Lampiran 19 a	173
Lampiran 19 b	175
	177
Lampiran 20 b	179
Lampiran 21	182

Lampiran 22	185
Lampiran 23 a	189
Lampiran 23 b	190
Lampiran 24 a	192
Lampiran 24 b	193
Lampiran 25	195
Lampiran 26	198
Lampiran 27 a	202
Lampiran 27 b	203
Lampiran 28 a	206
Lampiran 28 b	207
Lampiran 29 a	210
Lampiran 29 b	211
Lampiran 30 a	213
Lampiran 30 b	215
Lampiran 31 a	217
Lampiran 31 b	219
Lampiran 32 a	221
Lampiran 32 b	224
Lampiran 33 a	225
Lampiran 33 b	228
Lampiran 34 a	229
Lampiran 34 b	231
Lampiran 35 a	234
Lampiran 35 b	235
Lampiran 36 a	236
Lampiran 36 b	238
Lampiran 37	240
Lampiran 38	242
Lampiran 39	243
I amniran 40	244

247
250
251

BAB I PENDAHULUAN

A. Latar Belakang

Matematika merupakan salah satu mata pelajaran yang bisa digunakan untuk meningkatkan kemampuan berpikir kritis. Hal ini sesuai yang dikemukakan oleh Endrawati & Aini (2022) bahwa matematika merupakan salah satu cabang ilmu yang membantu proses untuk berpikir. Kemampuan berpikir kritis perlu untuk dikembangkan dan ditingkatkan karena kemampuan berpikir kritis merupakan kemampuan berpikir yang penting sebagai keterampilan yang harus dikuasai di abad 21. Hal ini sejalan dengan Nuryati et al., (2018) yang mengatakan bahwa berpikir kritis merupakan kemampuan yang sangat diperlukan dalam menghadapi permasalahan baik dalam kehidupan bermasyarakat maupun personal. Ruli & Indarini (2022) juga mengatakan bahwa berpikir kritis merupakan suatu proses membentuk mental yang handal dan efektif yang digunakan dalam mengerjakan ilmu pengetahuan tentang suatu dunia dan kehidupan nyata. Berpikir kritis juga penting karena di semua aspek kehidupan membutuhkan kemampuan yang berdasarkan pada kemampuan berpikir kritis. Sejalan dengan Zubaidah (2010) yang menyatakan bahwa berpikir kritis merupakan kemampuan yang sangat esensial untuk kehidupan dan sangat berfungsi efektif dalam semua aspek kehidupan. Zubaidah (2010) juga mengatakan bahwa kemampuan berpikir kritis dapat membantu peserta didik berpikir pada berbagai disiplin ilmu, serta dapat dipakai untuk menyiapkan peserta didik untuk menjalani karir dan kehidupan nyatanya.

Namun pada kenyatannya kemampuan berpikir kritis siswa masih tergolong rendah. Hal ini sesuai dengan hasil penelitian Endrawati & Aini (2022) yang menyatakan bahwa kemapuan berpikir kritis siswa dalam materi relasi dan fugsi masih tergolong rendah. Selain itu, Nurdwiandari (2018) dalam penelitiannya menyimpulan bahwa siswa masih banyak terdapat kesalahan dalam mengerjakan soal yang berdasarkan pada indikator kemampuan berpikir kritis. Dalam penelitiannya Dores,

Wibowo, & Susanti (2020) juga menyatakan bahwa kemampuan berpikir kritis siswa pada mata pelajaran matematika dikelas IV sekolah dasar negeri 03 Sebungkang tahun pelajaran 2020/2021 tergolong kategori sangat rendah yakni sebesar 29,58%. Rismayanti et al. (2022) juga menyatakan bahwa siswa belum mampu menginterpretasikan soal dengan menuliskan apa yang diketahui dan ditanyakan dengan tepat dalam mengerjakan soal tes kemampuan berpikir kritis. Selain itu pentingnya kemampuan berpikir kritis siswa juga belum didukung sepenuhnya dalam proses pembelajaran matematika. Hal ini sesuai dengan hasil penelitian Di lapangan, pengunaan media pembelajaran masih menggunakan buku cetak. Berdasarkan pengalaman saat melakukan magang III di SMA N 1 Weleri, mayoritas guru hanya menggunakan buku cetak sebagai media pembelajaran yang dibagikan kepada siswa. Selain itu, berdasarkan wawancara terhadap siswa SMP N 2 Weleri, pembelajaran yang ada saat ini juga hanya menggunakan buku cetak yang ada di sekolah dan beberapa ringkasan materi yang diberikan oleh guru. Untuk itu perlu adanya inovasi guna meningkatkan kemampuan berpikir kritis siswa salah satunya melalui media pembelajaran.

Di era yang serba modern seperti saat ini, pembelajaran berbasis teknologi sangatlah dibutuhkan untuk meningkatkan kemampuan berpikir kritis siswa. Teknologi dapat membantu guru dan siswa dalam memvisualisasikan konsep-konsep matematika ke dalam hal yang lebih nyata. Hal ini sejalan dengan yang disampaikan Nasution (2018) bahwa teknologi dapat membantu peserta didik dalam mensimulasikan, memodelkan, membuat percobaan, dan melihat visualisasi atau demonstrasi untuk memperjelas suatu konsep. Penggunaan teknologi juga sangat diperlukan dalam dunia pendidikan baik secara proses maupun pratik didalamnya (Jupri, 2018). Menurut Surani (2019) dengan bantuan teknologi pembelajaran menjadi tidak terbatas ruang dan waktu, dengan artian pembelajaran tidak hanya dapat dilakukan di ruang kelas dan hanya pada saat jam pembelajaran saja. Surani (2019) juga mengatakan bahwa

teknologi pendidikan tidak hanya sebuah ilmu namun juga merupakan sumber informasi dan sumber belajar yang dapat memfasilitasi proses pembelajaran yang sesuai dengan kebutuhan pendidikan.

Salah satu media pembelajaran yang dapat digunakan yaitu emodul. Menurut (Suarsana & Mahayukti, 2013) penggunaan e-modul yang berorientasi pada pemecahan masalah dapat membantu siswa untuk mencari pemecahan masalah secara mandiri yang memberikan pengalaman konkret dalam pemecahan masalah sehingga bisa melatih keterampilan berpikir tingkat tinggi termasuk keterampilan berpikir kritis. E-modul merupakan media pembelajaran berbasis teknologi yang memiliki kelebihan dibanding modul cetak yakni merupakan media pembelajaran yang interaktif sehingga memudahkan dalam navigasi, serta memungkinkan untuk ditampilkan/memuat gambar, audio, video, dan juga animasi (Suarsana & Mahayukti, 2013). Mayer (2009:59) mengatakan bahwa prinsip desain pembelajaran multimedia harus didasarkan pada pemahamna tentang bagaimana orang belajar melalui gambar dan katakata. E-modul sangat baik dipakai untuk meningkatkan keikutsertaan peserta didik selama pembelajaran. Berdasarkan hasil penelitian Nooruwaida (2022) e-modul valid dan layak digunakan dalam pembelajaran IPA dan efektif dalam meningkatkan kemampuan berpikir kritis siswa. Dalam penyusunan e-modul diperlukan bantuan software tertentu. Adapun software yang dipakai untuk pembuatan e-modul ini yaitu wolfram mathematica.

Wolfram mathematica merupakan software aplikasi buatan wolfram research yang handal untuk menyelesaikan beragam masalah matematika dengan fasilitas yang terintegrasi lengkap. Mathematica adalah visualisasi simbol serta perangkat lunak komputer berbasis manipuklasi yang merupakan salah satu software paling mutakhir yang dapat didapat dipakai oleh siswa (Murtianto et al., 2019). Wolfram mathematica juga dipilih sebagai software yang digunakan untuk pembuatan e-modul karena kesederhanaan bahasa yang ada pada wolfram

mathematica sehingga bisa digunakan oleh siapa saja tanpa harus menguasai bahasa pemprograman tertentu (Shodiqin & Fakhrudin, 2011). Razali (dalam Nugroho et al., 2017) menyatakan Wolfram Mathematica merupakan suatu sistem aljabar komputer (CAS, Computer Algebra System) yang mengintegrasikan kemampuan komputasi (Simbolik, numerik), visualisasi (grafik), bahasa pemrograman, dan pengolahan kata (word processing) ke dalam suatu lingkungan yang mudah digunakan. Pembelajaran dengan menggunakan bahan ajar berbasis Wolfram Mathematica diharapkan dapat meningkatkan kemampuan berpikir kritis siswa.

Berdasarkan uraian diatas, peneliti bermaksud melakukan penelitian dengan pengembangan *e-modul* berbantuan *wolfram mathematica* untuk meningkatkan kemampuan berpikir kritis siswa.

B. Rumusan Masalah

Adapun rumusan masalah dalam penelitian ini yakni:

- 1. Bagaimana mengembangakan *e-modul* berbantuan *wolfram mathematica* yang valid (layak) untuk meningkatkan kemampuan berpikir kritis siswa?
- 2. Apakah pembelajaran yang menggunakan *e-modul* berbantuan *wolfram mathematica* efektif dalam meningkatkan kemampuan berpikir kritis siswa?

C. Tujuan

Berdasarkan rumusan diatas maka tujuan dari penelitian ini adalah :

1. Menghasilkan *e-modul* berbantuan *wolfram mathematica* yang valid (layak) untuk meningkatkan kemampuan berpikir kritis

2. Untuk mengetahui apakah penggunaan *e-modul* berbantuan *wolfram mathematica* dalam pembelajaran efektif untuk meningkatkan kemampuan berpikir kritis siswa

D. Manfaat

Hasil penelitian pengembangan dari pembelajaran multimedia ini diharapkan bisa memberikan manfaat sebagai berikut:

1. Bagi guru

E-modul dapat dimanfaatkan sebagai media pembelajaran untuk membantu kegiatan belajar siswa dikelas

2. Bagi peserta didik

Hasil penelitian ini diharapkan mampu menjadi variasi lain untuk sumber belajar peserta didik dalam belajar secara mandiri guna mencapai penguasaan kompetensi dan meningkatkan kemampuan berpikir kritis.

3. Bagi peneliti

Menambah wawasan mengenai pengembangan *e-modul* sebagai bekal mengajar dan informasi untuk mengadakan penelitian lebih lanjut

BAB II TELAAH PUSTAKA

A. Landasan Teori

1. Penelitian Pengembangan

Secara ilmiah, penelitian adalah suatu upaya mencari jawaban berdasarkan masalah masalah yang dihadapi secara cermat, terukur, dan terarah (Rayanto & Sugianti, 2020:18). Menurut Tuckman (dalam Rayanto & Sugianti, 2020:18) mengatakan bahwa penelitian merupakan upaya sistematis untuk memberikan jawaban terhadap masalah atau fenomena yang dihadapi. Pengembangan merupakan penelitian yang ingin mengembangkan produk tertentu yang dianggap baru atau pembenahan dari produk yang sebelumnya yang telah ada untuk memperbaiki sistem yang ada (Fatirul & Walujo, 2021). Penelitian pengembangan menurut Fatirul & Walujo (2021) adalah proses yang digunakan untuk mengembangkan dan memvalidasi produk yang digunakan dalam pendidikan dan pembelajaran. Sedangkan menurut Setyosari (dalam Rayanto & Sugianti, 2020:20) penelitian pengembangan didefinisikan sebagai kajian sistematik untuk merancang, mengembangkan, dan mengevaluasi program, proses, dan dan hasil pembelajaran yang harus memenuhi kriteria konsistensi dan keefektifan secara internal. Hasil dari penelitian pengembangan dapat berupa: (1) model pembelajaran, (2) buku, modul pembelajaran, atau bahan ajar, (3) sistem pembelajaran, (4) metode pembelajaran, (5) media pembelajaran, (6) evaluasi atau bentuk dan model evaluasi, (7) model pengembangan kurikulum, (8) penataan ruang kelas dalam model pembelajaran tertentu, (9) model uji kompetensi, (10) strategi pembelajaran (Fatirul & Walujo, 2021).

Dalam penelitian dan pengembangan terdapat beberapa model yang dapat dijadian acuan. Model pengembangan Borg and Gall, menurut Hamdani (dalam Maydiantoro, 2019) pada model ini tedapat 10 langkah yaitu (1) penelitian dan pengumpulan data (research and information colleting), (2) perencanaan (planning), (3) pengembangan draft produk (develop preliminary form of product), (4) uji coba lapangan (preliminary field testing), (5) penyempurnaan produk awal (main product revision), (6) uji coba lapangan (main field testing), (7) menyempurnakan produk hasil uji lapangan (operational product revision), (8) uji pelaksanaan lapangan (operasional field testing), (9) penyempurnaan produk akhir (final product revision), dan (10) diseminasi dan implementasi (disemination and implementation). Model pengembangan ini dapat menghasilkan suatu produk dengan nilai validasi yang tinggi dan mendorong proses inovasi produk yang tiada henti namun memerlukan waktu yang relatif panjang, karena prosedur realtif kompleks dan memerlukan sumber dana yang cukup besar (Maydiantoro, 2019)

Model 4D, model pengembangan ini terdiri dari empat tahap pengembangan. Tahap pertama *define* atau sering disebut sebagai tahap analisis kebutuhan, tahap kedua adalah *design* yaitu menyiapkan kerangka konseptual model dan perangkat pembelajaran, lalu tahap ketiga *develop*, yaitu tahap pengembangan melibatkan uji validasi atau menilai kelayakan media, dan terakhir adalah tahap *disseminate*, yaitu implementasi pada sasaran sesungguhnya yaitu subjek penelitian. Model pengembangan ini tidak membutuhkan waktu yang relatif lama, karena tahapan relatif tidak terlalu kompleks namun di dalam model 4D hanya sampai pada tahapan penyebaran saja, dan tidak ada evaluasi, dimana evaluasi yang dimaksud adalah mengukur kualitas produk yang telah diujikan, uji kualitas produk dilakukan untuk hasil sebelum dan sesudah menggunakan produk (Maydiantoro, 2019).

Model pengembangan ADDIE, model pengembangan ini melibatkan tahap-tahap pengembangan model dengan lima langkah/fase pengembangan meliputi: Analysis, Design, Development or Production, Implementation dan Evaluations. Model pengembangan ADIIE banyak

digunakan dalam penelitian menurut Pribadi (dalam Ardiyanto, 2022) karena mudah dipahami dan strukturnya sistematis. Dimana kelima tahap saling beerkaitan dan dalam pengaplikasiannya harus secara sistematik, tidak boleh diurutkan secara acak atau memilih yang mana yang akan didahulukan menurut peniliti karena kelima tahap sudah sangat sederhana jika dibandingkan dengan tahap lain. Sedangkan menurut Permana (2022) model pengembangan ADDIE merupakan suatu model pengembangan yang disusun dengan langkah-langkah sistematis untuk memecahkan masalah dalam pembelajaran. Menurut Sisilahi & Chan (2022) model ADDIE juga banyak digunakan karena memiliki langkah-langkah penelitian yang mudah dan sederhana, memiliki sistem yang sistematis dan dapat digunakan pada berbagai produk pengembangan.

2. Media Pembelajaran

Media pembelajaran merupakan bagian penting dalam proses pembelajaran. Menurut Zahwa (2022) Media pembelajaran merupakan seperangkat alat atau digunakan sebagai wadah selama pembelajaran untuk mengkomunikasikan pesan dan informasi yang dapat berupa bahan ajar yang dapat merangsang minat belajar seseorang untuk mencapai tujuan dalam proses pembelajaran.

Dalam pengertian lain, menurut Sanjaya (2010) Kata media berasal dari bahasa latin bentuk jamak dari kata medium. Berarti pengantar atau mediasi. Media pembelajaran merupakan sebuah alat yang bisa membantu guru atau pendidik dalam menyampaikan sesuatu kepada peserta didik. Dengan adanya media pembelajaran dapat merangsag minat dan kemauan belajar peserta ddik terhadap matematika.

Media pembelajaran adalah alat yang bisa digunakan dalam proses belajar mengajar untuk membantu dalam penyampaian pesan secara jelas sehingga tujuan pembelajaran tercapai lebih baik dan sempurna (Kustandi & Dermawan, 2020:5). Sedangkan menurut Dewi & Budiana (2018) Media pembelajaran merupakan sesuatu yang membantu guru

menciptakan lingkungan belajar yang nyaman bagi siswanya. Tidak hanya itu, penggunaan media memungkinkan audiens untuk melakukan berbagai kegiatan. Mereka tidak hanya bergantung pada pendidik atau salah satu sumber belajar. Dengan demikian, penggunaan media pembelajaran membantu peserta didik untuk belajar mandiri dalam meningkatkan kemampuan berpikir kritis.

Adapun manfaat dari media pembelajaran menurut Nurrita (2018) yaitu :

- 1) Memberikan pedoman bagi guru untuk mencapai tujuan pembelajaran sehingga dapat menjelaskan materi pembelajaran dengan urutan yang sistematis dan membantu dalam penyajian materi yang menarik ntuk meningkatkan kualitas pembelajaran
- 2) Dapat meningkatkan motivasi dan minat belajara siswa sehingga siswa dapat berpikir dan menganalisis materi pelajaran yang diberikan oleh guru dengan baik dengan situasi belajar yang menyenangkan dan siswa dapat memahami materi pelajaran dengan mudah.

Kedudukan media dalam sistem pembelajaran menurut Kustandi & Dermawan (2020) antara lain :

- 1) Sebagai alat bantu
- 2) Sebagai penyalur pesan
- 3) Sebagai alat penguatan (reinformecent)
- 4) Mewakili guru dalam penyampaian informasi secara lebih jelas, detail, dan menarik.

3. Modul

Modul adalah bagian dari media pembelajaran yang dapat membantu guru dalam proses pembelajaran. Menurut Gunawan (2022) modul merupakan bahan ajar yang memuat satu paket pengalaman belajar yang terencana dan tersusun agar peserta didik menguasai tujuan belajar

yang spesisfik. Tujuan penyusunan modul menurut Gunawan (2022) adalah sebagai berikut :

- 1) Memudahkan dalam penyajian dan tidak bersifat verbal
- 2) Membantu mensiasati keterbatasan waktu, ruang dan daya tangkap bagi guru dan peserta didik
- 3) Meningkatkan gairah siswa dalam belajar dan membantu untuk belajar mandiri
- 4) Siswa dapat melakukan refleksi dan evaluasi mandiri

Modul merupakan saran pembelajaran yang memuat materi, metode, batasan-batasan, dan cara mengevaluasi yang disusun menarik dan sistematis untuk mencapai kompetensi yang diharapkan sesuai dengan tingkat kompleksitasnya (Kustandi & Dermawan, 2020). Modul adalah suatu unit program belajar yang digunakan dalam kegiatan pembelajaran guna membantu siswa mencapai tujuan tertentu secara mandiri (Fausih & Danang, 2015).

Berikut ini tujuan penyusunan modul menurut Andi (dalam Farisyi, 2018) :

- Agar peserta didik dapat belajar secara mandiri tanpa atau dengan bimbingan pendidik
- 2) Agar peran pendidik tidak terlalu dominan dan otoriter dalam kegiatan pembelajaran
- 3) Melatih kejujuran peserta didik
- 4) Mengakomodasi berbagai tingkat dan kecepatan belajar peserta didik. Bagi peserta didik yang kecepatan belajarnya tinggi, maka mereka dapat belajar lebih cepat serta menyelesaikan modul dengan lebih cepat pula. Sebaliknya, bagi yang lambat maka mereka akan dipersilahkan untuk mengulanginya kembali.
- 5) Agar peserta didik mampu mengukur sendiri tingkat penguasaan materi yang telah dipelajari

4. *E-modul* (modul elektronik)

E-modul merupakan media digital yang berisi satu unit bahan ajar yang dapat membantu siswa dalam memecahkan masalah secara mandiri yang efektif, efisien, dan mengutamakan kemandirian siswa dalam melakukan kegiatan belajar (Fausih & Danang, 2015). Menurut Sugianto et al. (2017) modul elektronik ialah sebuah bentuk penyajian bahan ajar mandiri yang disusun secara sistematis ke dalam unit pembelajaran terkecil guna mencapai tujuan pembelajaran eksklusif yang disajikan ke dalam format elektronik yang didalamnya terdapat audio, animasi, dan navigasi yang membuat pengguna lebih interaktif dengan program.

Karakterisitik dari teknologi komputer baik perangkat keras maupun lunak menurut Warsita (dalam Feriyanti, 2019) adalah sebagai berikut:

- 1) Dapat digunakan secara acak
- 2) Dapat digunakan sesuai dengan keinginan peserta didik
- 3) Gagasan-gagasan biasanya diungkapkan secara abstrak atau simbol
- 4) Prinsip-prinsip ilmu kognitif diterapkan selama pengembangan
- 5) Belajar dapat berpusat pada peserta didik dengan interaksi tinggi

E-modul merupakan salah satu bentuk penyajian bahan ajar atau sarana pembelajaran yang memuat beberapa aspek seperti materi, metode, batasan-batasan, dan cara mengevaluasinya yang dirancang sistematis serta menarik dalam bentuk elektronik guna mencapai kompetensi yang sesuai dengan tingkat kompleksitasnya (Hidayatulloh, 2016). Menurut Farisyi (2018) Modul elektronik pada dasarnya dalam struktur penulisannya mengadaptasi format, karakteristik, dan bagian bagian yang terdapat pada modul cetak pada umumnya. Akan tetapi akan terdapat beberapa perbedaan.

Berikut ini merupakan beberapa perbedaan antara modul cetak dan modul elektronik menurut Farisyi (2018) :

Tabel 2 1 Perbedaan modul elektronik dan modul cetak

Modul elektronik	Modul cetak
Format elektronik (dapat berupa file	Format berbentuk cetak (kertas)
.doc, .exe, .pdf, dll)	
Ditampilkan menggunakan	Tampilannya berupa kumpulan
perangkat elektronik dan software	kertas yang tercetak
khusus (laptop, PC, HP, Internet)	
Biaya produksi lebih murah	Biaya produksi lebih mahal
Lebih praktis untuk dibawa	Berbentuk fisik, untuk membawa
	dibutuhkan ruang untuk meletakan
Tahan lama dan tidak akan lapuk	Daya tahan kertas terbatas oleh
dimakan waktu	waktu
Menggunakan sumber daya tenaga	Tidak perlu sumber daya khusus
Listrik	untuk menggunakannya
Dapat dilengkapi dengan audio atau	Tidak dapat dilengkapi dengan
video dalam penyajiannya	audio atau video dalam
	penyajiannya.

5. Wolfram Mathematica

Wolfram mathematica merupakan salah satu software yang dapat digunakan dalam proses penyusunan e-modul. Hal ini sejalan dengan penelitian Rahmawati et al (2019) yang menyatakan bahwa wolfram mathematica merupakan suatu sistem aljabar komputer CAS (Computer Algebra System) yang menintegrasikan kemampuan komputasi (Simbolik, numerik), visualisasi (grafik), bahasa pemrograman, dan pengolahan kata (word processing) ke dalam suatu lingkungan yang mudah digunakan.

Mathematica merupakan software aplikasi buatan Wolfram Research yang handal dengan fasilitas terintegrasi lengkap untuk menyelesaikan beragam masalah matematika. Mathematica memiliki fasilitas fungsi matematika terpasang (built-in mathematics function) lebih dari 750 buah yang menjadikan sintak programnya dapat dinyatakan dalam satu atau beberapa baris sederhana saja. (Shodiqin & Fakhrudin, 2011). Itulah mengapa dengan mathematica, beragam kasus pada matematika mulai dari yang paling sederhana hingga yang paling rumit bisa diselesaikan dengan mathematica secara mudah, cepat, tepat, dan ringkas.

Dalam bidang pendidikan, penelitian, dan bisnis *mathematica* menjadi salah satu software pilihan khususnya untuk melakukan :

- 1) Komputasi matematika, baik untuk perhitungan numerik maupun simbolik.
- 2) Visualisasi grafik fungsi dimensi-dua dan dimensi-tiga.
- 3) Pemprograman, pemodelan matematika dan simulasi.
- 4) Analisis statistik dan visualisasi data dalam bentuk tabel dan grafik. (Sholahudin, 2017)

Keunggulan dan kemampuan *Mathematica* dalam proses belajar mengajar antara lain :

- 1) Mampu membuat dokumen (word processing)
- 2) Mendukung untuk melakukan presentasi
- 3) Membantu dalam melakukan berbagai perhitungan
- 4) Memiliki dasar pengetahuan yang sangat luas, dan masih banyak kemampuan lainnya. (Sholahudin, 2017)

Dalam penelitiannya, Sholahudin (2017) juga mengatakan bahwa bagi pengajar, *Wolfram Mathematica* dapat meningkatkan tugas harian seperti :

- 1) Menggunakan slide shows untuk membantu dalam proses penyampaian materi pembelajaran
- 2) Membuat rangkuman dan kuis bagi siswa

3) Menjelajahi konsep dengan teknologi interaktif.

Dalam mencipatakan model interaktif untuk memperdalam pemahaman konsep dikelas yang dapat meningkatkan kemampuan berpikir kritis, dan melakukan komputasi dan visualisasi apa saja guru dan siswa dapat menggunakan *Wolfram Mathematica*.

6. Kemampuan Berpikir Kritis

Kemampuan berpikir kritis adalah kemampuan berpikir yang sangat dibutuhkan di abad 21. Berpikir kritis merupakan suatu proses berpikir untuk untuk memecahkan suatu masalah yang diatur dan berperan dalam proses pengambilan keputusan (Aini et al., 2022). Berpikir kritis merupakan suatu proses yang terarah dan jelas yang biasa digunakan dalam kegiatan mental seperti memecahkan masalah, mengambil keputusan, membujuk, menanalisis asumsi, dan melakukan penelitian ilmiah (Johnson, 2002:183). Facione (dalam Nuryanti et al., 2018) menyatakan bahwa berpikir kritis merupakan pengaturan diri dalam memutuskan sesuatu yang menghasilkan interpretasi, analisis, evaluasi, dan inferensi, maupun pemaparan menggunakan suatu bukti, konsep, metodologi, kriteria, atau pertimbangan kontekstual yang menjadi dasar dibuatnya keputusan.

Berpikir kritis merupakan kemampuan mempertimbangkan segala sesuatu dengan metode-metode berpikir secara konsisten serta merefleksikannya sebagai dasar pengambilan keputusan (Sitohang, 2019:37). Yasinta et al. (2022) mengatakan dalam penelitiannya bahwa berpikir kritis pada pembelajaran matematika adalah interaksi mental individu yang ditentukan untuk memperoleh informasi numerik berdasarkan pemikiran numerik.

Untuk memperjelas tentang berpikir kritis, maka berikut ini merupakan indikator berpikir kritis dari beberapa ahli. Facione (2011) mengungkapkan 6 indikator berpikir kritis yang dijelaskan pada tabel berikut:

Tabel 2 2Indikator menurut Facione (2011)

Indikator	Keterangan indikator
Idetify	Menentukan ide pokok permasalahan yang dihadapi.
Define	Menentukan fakta-fakta yang membatasi masalah, fakta-fakta permasalahan yang dimaksud meliputi apa saja yang diketahui, ditanya pada soal, serta informasi apa yang tidak digunakan atau tidak diperlukan
Enumerate	Menentukan atau mendaftar pilihan-pilihan jawaban yang mungkin dari masalah secara masuk akal.
Analyze	Menganalisis pilihan jawaban apa yang terbaik untuk diambil sebagai pilihan.
List	Menyebutkan alasan yang tepat mengapa pilihan jawaban yang dipilih terbaik
Self correction	Mengecek kembali secara menyeluruh, apakah ada tindakan-tindakan untuk menyelesaikan soal yang terlewati.

Sedangkan menurut Rahayu & Alyani (2020) indikator berpikir kritis adalah sebagai berikut :

Tabel 2 3 Indikator berpikir kritis menurut Rahayu & Alyani (2020)

Indikator umum	Indikator
Menginterpretasi	Memahami masalah yang ditunjukkan dengan menulis diketahui maupun yang ditanyakan soal dengan tepat.
menganalisis	Mengidentifikasi hubungan-hubungan antara pernyataan-pernyataan, pertanyaan-pertanyaan, dan konsep-konsep yang diberikan dalam soal yang ditunjukkan dengan membuat model matematika dengan tepat dan memberi penjelasan dengan tepat.
Mengevaluasi	Menggunakan strategi yang tepat dalam menyelesaikan soal, lengkap dan benar dalam melakukan perhitungan.
Mengintervensi	Membuat kesimpulan dengan tepat.

Tabel 2 4 Indikator berpikir kritis menurut Fatmawati et al. (2020)

Indikator kemampuan berpikir kritis	Sub indikator kemampuan berpikir
	kritis
Mampu menganalisis suatu	Siswa mamou menentukan ide
permasalahan	pokok suatu permasalahan,
	menyusun apa yang diketahui dan
	ditanyakan
Mampu mengatur strategi	Siswa mampu menentukan solusi
pemecahan masalah	pemecahan masalah
Mampu mengevaluasi dan	Siswa mampu membenarkan atua
memberikan argumen yang logis	menyalahkan suatu penyataan dan
terhadap suatu pernyataan	memberikan argumen yang logis
Menarik kesimpulan	Siswa mampu memebrika
	kesimpulan atas hasil jawaban yang
	diberikan

Tabel 2 5 Indikator yang digunakan dalam penelitian

Indikator umum	Indikator
Menginterpretasi	Memahami masalah yang ditunjukkan dengan
	menulis diketahui maupun yang ditanyakan soal dengan tepat.
Menganalisis	Mengidentifikasi hubungan-hubungan antara
	pernyataan-pernyataan, pertanyaan-pertanyaan, dan
	konsep-konsep yang diberikan dalam soal yang
	ditunjukkan dengan membuat model matematika
	dengan tepat dan memberi penjelasan dengan tepat.
Mengevaluasi	Menggunakan strategi yang tepat dalam
	menyelesaikan soal, lengkap dan benar dalam
	melakukan perhitungan.
Mengintervensi	Membuat kesimpulan dengan tepat.

Indikator yang dipakai pada penelitian ini menggunakan indikator yang dikemukakan oleh Rahayu & Alyani (2020) yang mengadopsi dari indikator berpikir kritis yang disampaikan oleh Facione (1994) yaitu:

(1) Interpretasi,

Menginterpretasi adalah memahami dan mengekspresikan makna atau signifikansi dari berbagai macam pengalaman, situasi, data, kejadian-kejadian, penilaian, kebiasaan, atau adat, kepercayaan-kepercayaan, aturan-aturan, prosedur, atau kriteria-kriteria

(2) Analisis

adalah mengindentifikasi Analisis hubungan-hubungan inferensial yang dimaksud dan aktual diantara pernyataanpernyataan, konsep-konsep, deskripsi-deskripsi atau bentukbentuk representasi lainnya yang dimaksudkan mengekspresikan kepercayaan-kepercayaan penilaain, pengalaman-pengalaman, alasan-alasan, informasi, atau opiniopini

(3) Evaluasi

Evaluasi berarti menaksir kredibilitas pernyataan-pernyataan atau representasi-representasi yang merupakan laporan-laporan atau deskripsi-deskripsi dari persepsi, pengalaman, situasi, penilaian, kepercayaan atau opini seseorang, dan menaksir kekuatan logis dari hubungan-hubungan inferensial atau dimaksud diantara pernyataan-pernyaan, deskripsi-deskripsi, pertanyaan-pertanyaan, atau bentuk-bentuk representasi lainnya.

(4) Inferensi

Inferensi berarti engidentifikasi dan memperoleh unsur-unsur yang diperlukan untuk membuat kesimpulan- kesimpulan yang masuk akal, membuat dugaan-dugaan dan hipotesis, mempertimbangkan informasi yang relevan dan menyimpulkan

konsekuensi-konsekuensi dari data, situasi-situasi, pertanyanpertanyaan atau bentuk-bentuk representasi lainya.

7. Canva

Canva merupakan salah satu alat design grafis yang bisa diakses secara online. Hal ini sejalan dengan Pramuditya et al. (2022:10) yang mengatakan bahwa canva merupakan alat yang membantu penggunanya unuk lebih mudah dalam merancang berbagai jenis desain kreatif secara online. Menurut Septianingsih (dalam Pramuditya et al., 2022:10) canva saat ini tersedia dalam beberapa versi seperti web (online), iPhone, dan android.

Secara online canva dapat diakses pada www.canva.com yang menyediakan berbagai template gratis yang bisa kita gunakan dengan mudah. Canva merupakan aplikasi yang berbasis teknologi yang menyediakan ruang belajar untuk setiap pendidik dalam melaksakan pembelajaran salah satunya menggunakan media pembelajaran berbasis canva (Purba & Harahap, 2022). Dengan banyaknya fitur yang ditawarkan, dapat memudahkan guru dalam penyusunan media pembelajaran yang lebih menarik bagi siswa. Beberapa fitur canva yang dapat mempermudah penyusunan media pembelajaran menurut Purba & Harahap (2022) sebagai berikut:

Tabel 2 6 Fitur-fitur canva menurut Purba & Harahap (2022)

Jutaan Gambar	Buat design dengan jutaan stok foto,		
	vektor, dan ilustrasi bahkan bisa		
	mengunggah gambar sendiri		
Filter foto	Edit foto menggunakan filter siap		
	pakai, atau bila lebih profesional,		
	menggunakan pengedit foto.		
Ikon dan bentuk grafis	Gunakan ikon, bentuk, dan elemen		

	dengan mudah. Pilih dari ribuan
	elemen untuk desain pengguna atau
	unggah elemen sendiri
Ratusan font	Pengguna dapat megakses ratusan
	font keren yang disedikan oleh
	canva

Dari beberapa fitur dan kemudahan yang ditawarkan oleh canva, peneliti memilih canva sebagai salah satu software yang dipakai dalam proses penyusunan e-modul.

8. Efektivitas

Efektivitas merupakan suatu standar dalam tercapainya tujuan tertentu. Hal ini sesuai dengan Monalisa (2019:12) yang mengatakan bahwa efektivitas menunjukan seberapa jauh tercapainya suatu tujuan yang telah ditetapkan. Menurut Setiawan et al. (2021:77) efektivitas pembelajaran ketercapaian pengetahuan dan kompetensi siswa.

Pembelajaran yang efektif ditandai dengan adanya ketuntasan dalam prestasi belajar, adanya pengaruh positif antara variabel bebas dan terikat, serta terdapat perbedaan prestasi antara kelas eksperimen dan kelas kontrol (Geskey dalam Nugroho, 2012).

Sinambela (dalam Pujiastutik, 2017) mengatakan bahwa pembelajaran dikatakan efektif apabila mencapai sasaran yang diinginkan, baik dari segi tujuan pembelajaran maupun prestasi mahasiswa yang maksimal.

Berikut ini beberapa indikator efektifitas menurut ahli:

Menurut Abdillah (2017):

- a. Kesesuaian dengan tujuan pembelajaran,
- b. Kesesuaian terhadap isi bahan pelajaran,
- c. Keterampilan guru menggunakannya dan sesuai dengan taraf berpikir siswa.

Menurut Sinambela (dalam Pujiastutik, 2017):

- a. Ketercapaian ketuntasan belajar,
- Ketercapaian keefektifan aktivitas mahasiswa (yaitu pencapaian waktu ideal yang digunakan mahasiswa untuk melakukan setiap kegiatan yang termuat dalam rencana pembelajaran),
- Ketercapaian efektivitas kemampuan dosen mengelola pembelajaran, dan respon mahasiswa terhadap pembelajaran yang positif

Menurut Wotruba & Wright (dalam Pujiastutik, 2017):

- a. Pengorganisasian Materi Yang Baik,
- b. Komunikasi Yang Efektif,
- c. Penguasaan dan Antusiasme Terhadap materi Pelajaran,
- d. Sikap Positif Terhadap Mahasiswa,
- e. Pemberian Nilai Yang Adil,
- f. Keluwesan Dalam Pendekatan Pembelajaran,
- g. Hasil Belajar Mahasiswa Yang Baik.

Dalam penelitian ini peneliti menggunakan indikator efektifitas yang diadopsi dari indikator yang disampaikan Lintang et al., (2017) yaitu:

- a. Ketuntasan tes kemampuan berpikir kritis >75%
- Hasil kemampuan berpikir kritis kelas eksperimen lebih baik dari hasil belajar kelas kontrol
- c. Adanya peningkatan kemampuan berpikir kritis

B. Kerangka Berpikir

Berpikir kritis

Endrawati & Aini (2022) dalam penelitiannya yang berjudul "Deskripsi Kemampuan Berpikir Kritis Matematis Dalam Pembelajaran Relasi Dan Fungsi Di SMP" menyatakan bahwa kemapuan berpikir kritis siswa dalam materi relasi dan fugsi masih tergolong rendah.

Selain itu, Nurdwiandari (2018) dalam penelitiannya yang berjudul "Analisis kemampuan berpikir kritis matematik dan kemampuan diri siswa smp di kabupaten bandung barat" menyimpulan bahwa siswa masih banyak terdapat kesalahan dalam mengerjakan soal yang berdasarkan pada indikator kemampuan berpikir kritis.

Dores, Wibowo, & Susanti (2020) juga menyatakan dalam penelitiannya yang berjudul "Analisis kemampuan berpikir kritis siswa pada mata pelajaran matematika" bahwa kemampuan berpikir kritis siswa pada mata pelajaran matematika dikelas IV sekolah dasar negeri 03 Sebungkang tahun pelajaran 2020/2021 tergolong kategori sangat rendah yakni sebesar 29,58%.

Rismayanti et al. (2022) juga menyatakan dalam penelitiaannya yang berjudul "Pengembangan E-Modul Berbantu Kodular pada Smartphone untuk Meningkatkan Kemampuan Berpikir Kritis Matematis Siswa SMP" bahwa siswa belum mampu menginterpretasikan soal dengan menuliskan apa yang diketahui dan ditanyakan dengan tepat dalam mengerjakan soal tes kemampuan berpikir kritis.

Penggunaan e-modul

Rismayanti et al. (2022) menyatakan dalam penelitiaannya yang berjudul "Pengembangan E-Modul Berbantu Kodular pada Smartphone untuk Meningkatkan Kemampuan Berpikir Kritis Matematis Siswa SMP" bahwa e-modul berbantu kodular pada smartphone android menarik dan layak digunakan serta mampu meningkatkan kemampuan berpikir kritis matematis siswa SMP.

Ula & Fadila (2018) menyatakan dalam penelitiannya bahwa E-Modul yang dihasilkan LCDS akan lebih menarik apabila di tunjang oleh aplikasi lain seperti microsoft power point, photoshop, corel draw, dan aplikasi lain yang dapat menampilkan text dan gambar.

Maryam et al. (2019) menyatakan bahwa *E*-modul matematika berbasis open ended termasuk kriteria efektif ditinjau dari tes hasil belajar peserta didik yang menunjukan presentase ketuntasan sebesar 68% yang termasuk kriteria "efektif".

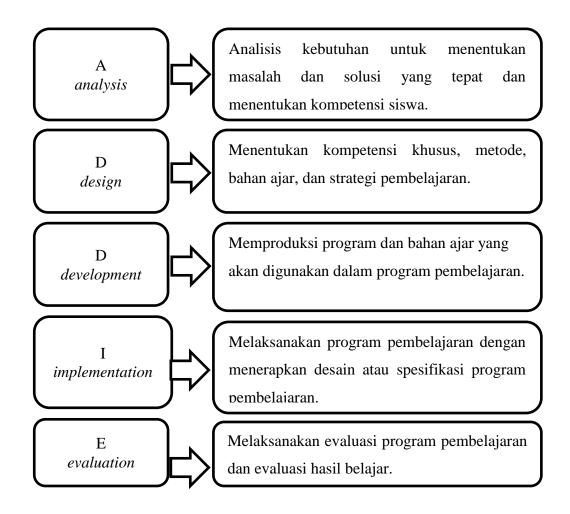
Dari	beberapa	penilitian	diatas,	peneliti	bertujuan	untuk

mengembangkan *e-modul* untuk meningkatkan kemampuan berpikir kritis siswa dengan menggunakan *software wolfram mathematica*.

Bagan 2 1Kerangka Berpikir

C. Hipotesis Penelitian

Berdasarkan landasan teori diatas, maka hipotesus yang aka diajukan untuk masalah tersebut adalah:


- 1. *E-Modul* berbantuan *wolfram mathematica* valid (layak) digunakan untuk meningkatkan kemampuan berpikir kritis siswa
- 2. Terdapat peningkatan kemampuan berpikir kritis siswa setelah menggunakan *e-modul* berbantuan *wolfram mathematica*

D. Produk Yang Akan Dihasilkan

Penelitian ini akan mengembangkan modul elektronik berbantuan wolfram mathematica yang diharapkan dapat meningkatkan kemampuan berpikir kritis siswa.

BAB III METODE PENELITIAN

Metode penelitian yang akan digunakan dalam penelitian ini yakni penelitian dan pengembangan (*Research and Development*). Metode penelitian *Research and Development* merupakan sebuah metode dalam peneltian yang bertujuan menghasilkan produk tertentu pada suatu bidang keahlian, yang disertai produk sampingan dan memiliki efektivitas dari sebuah produk tersebut (Saputro, 2016). Dalam penelitian ini produk yang akan dihasilkan yaitu *e-modul* berbantuan *wolfram mathematica*. Model yang digunakan dalam penelitian ini yaitu model ADDIE yang dikembangkan oleh Branch (2009) dengan tahapan (*A)nalisys*, (*D)esign*, (*D)evelopment*, (*I)mplementation*, (*E)valuation* yang lebih rinci dijelaskan seperti dibawah ini:

Gambar 3 1 Tahapan model ADDIE

A. Studi Pendahuluan

1. Analisis (analisys)

Langkah analisis terdiri dari dua tahap yaitu analisis kinerja dan analisis kebutuhan. Kedua tahap tersebut dijelaskan lebih rinci sebagai berikut:

1) Analisis kinerja

Pada tahap ini dilakukan wawancara dengan guru matematika di SMP Negeri 2 Weleri. Dari pelaksanaan wawancara diperoleh data bahwa penggunaan media dalam pembelajaran di SMP Negeri 2 Weleri masih terbatas. Kemampuan berpikir kritis siswa juga masih rendah dikarena siswa kurang tertarik dalm proses kegiatan pembelajaran.

2) Analisis kebutuhan

Pada tahap ini dilakukan analisis untuk mengetahui kebutuhan siswa dalam proses kegiatan pembelajaran, yaitu diperlukan media pembelajaran yang dapat membantu siswa belajar mandiri guna meningkatkan kemampuan berpikir kritis.

2. Design

Pada tahap ini peneliti merancang produk yang akan dihasilkan dengan tahapan :

- Menentukan materi yang akan diajarkan dan kompetensi dasar yang akan digunakan
- 2) Menyiapkan sumber referensi
- 3) Menyusun materi berbantuan wolfram mathematica
- 4) Membuat rancangan awal produk yang akan dihasilkan

3. Development

Pada tahap ini peneliti membuat produk yang sudah dirancang pada tahap *design* yang akan digunakan. Sebelum

digunakan produk akan diuji kevalidan dan keefektiannya oeh validator baik ahli materi maupun ahli media.

4. Implementation

Pada tahap ini produk yang dihasilkan akan diuji cobakan ke peserta didik pada kelas eksperimen dengan dilakukan pembelajaran sebanyak 3 kali pertemuan.

5. Evaluation

Pada tahap ini peneliti menggunakan *post test* yang akan dianalisis, hasil analisis tersebut digunakan untuk mengetahui keefektifan *e-modul* untuk meningkatkan kemampuan berpikir kritis. Selain itu peneliti membagikan angket penilaian *e-modul* berbantuan *wolfram mathematica* kepada pengguna yaitu siswa pada kelas eksperimen.

B. Rancangan Produk

1. Desain Produk

Pada penelitian ini, peneliti mendesign sebuah media pembelajaran berupa *e-modul* dengan harapan pembelajaran dapat mencapai tujuan yang diinginkan. Dalam penelitian dan pengembangan akan menghasilkan sebuah *e-modul* untuk meningkatkan kemampuan berpikir kritis

2. Validasi Ahli

a. Instrumen validasi ahli

Validasi ahli merupakan suatu kegiatan penilaian terhadap rancangan produk sehingga produk tersebut dapat dikatakan valid atau tidak. Menurut sugiyono (Sugiyono, 2008) validasi ahli dapat dilakukan dengan cara menghadirkan beberapa pakar atau tenaga ahli yang sudah berpengalaman untuk menilai

produk baru yang dirancang tersebut sehingga dapat diketahui kelemahan dan kekuatannya.

Instrumen yang digunakan berupa angket yakni lembar angket (kuesioner) ahli materi pembelajaran, ahli media pembelajaran, dan tanggapan siswa.

1) Validasi ahli materi

Ahli materi pembelajaran yaitu sesorang yang dianggap ahli dalam suatu bidang materi tertentu, yakni Dosen Universitas PGRI Semarang.

2) Validasi ahli media

Ahli media yaitu seseorang yang ahli dalam media pembelajaran untuk menilai kelayakan suatu media yang dikembangkan berdasarkan aspek-aspek penilain seperti tampilan produk, kelancaran fitur, ketersampaian pesan, dan orisinilitas produk.

Dalam pengambilan data validasi menggunakan acuan skala likert. Menurut Sugiyono (Sugiyono, 2008) ada 5 skala sebagai berikut:

Tabel 3 1Tabel Skala Likert

Pernyataan		Skor
Sangat Setuju	SS	5
Setuju	S	4
Ragu-Ragu	RG	3
Tidak Setuju	TS	2
Sangat Tidak	STS	1
Setuju		

(Sugiyono, 2008)

3. Revisi produk

Revisi produk dilakukan setelah mendapat koreksi dari ahli. Setelah diperoleh nilai dari validasi ahli yang kemudian nilai tersebut dianalisis agar mengetahui apakah produk yang dihasilkan sudah layak di uji coba kan atau belum. Jika belum maka peneliti akan melakukan revisi produk yang mengacu pada penilaian ahli media dan ahli materi pada lembar angket.

C. Ujicoba Produk

1. Subjek Penelitian

a. Populasi

Populasi adalah wilayah generasi yang terdiri dari : obyek/subyek yang memiliki kuantitas dan karakteristik tertentu yang ditetapkan oleh peneliti untuk dipelajari yang kemudian ditarik kesimpulannyan (Sugiyono, 2016) Populasi pada penelitian ini adalah siswa kelas VIII Semester II Tahun Ajaran 2021/2022 SMP N 2 Weleri.

b. Sampel

Sampel adalah bagian dari jumlah dan karakteristik yang dimiliki populasi (Sugiyono, 2016:62). Pada penelitian ini sampel diambil dengan menggunakan cluster random sampling. Menurut (Azwar dalam Sari & Siswati, 2016) cluster random sampling adalah teknik pengambilan sampel yang digunkan jika populasi yang diteliti berjumlah besar dan randomisasi dilakukan terhadap kelompok bukan terhadap subjek secara individu.

Sampel pada penelitian ini terdiri dari 2 kelas, satu kelas sebagai kelas eksperimen dan satu kelas sebagai kelas kontrol.

2. Teknik Pengumpulan Data

Teknik pengumpulan data dalam penelitian ini menggunakan teknik angket dan observasi. Berikut akan dijelaskan mengenai teknik pengumpulan data yang digunakan :

a. Angket atau kuesioner

Angket atau kuesioner adalah teknik pengumpulan data dengan memberika sejumlah pertanyaan kepada responden untuk dijawab (Sugiyono, 2018:142)

Angket diisi menggunakan acuan skala likert. Adapun perhitungan skala likert menurut Sugiyono (Sugiyono, 2008) ada 5 skala sebagai berikut:

Tabel 3 2 Tabel Skala Likert

Pernyataan		Skor
Sangat Setuju	SS	5
Setuju	S	4
Ragu-Ragu	RG	3
Tidak Setuju	TS	2
Sangat Tidak	STS	1
Setuju		

(Sugiyono, 2008)

Setelah angket divalidasi oleh ahli, kemudian angket dianalisis dan dipresentasekan. perhitungan presentase menurut arikunto (2012) sebagai berikut :

$$p = \frac{\sum jawaban \times bobot \ tiap \ pilihan}{n \times bobot \ tertinggi} \times 100\%$$

Keterangan:

p = presentase hasil angket

 \sum = jumlah

n = jumlah seluruh butir lembar validasi

Setelah presentase dihitung kemudian di intepretasikan ke dalam kriteria. Kriterianya sebagai berikut :

Tabel 3 3 Range dan Kriteria Kuantitatif Program

Interfal	Kriteria
81%-100%	Sangat Baik
61%-80%	Baik
41%-60%	Cukup
21%-40%	Kurang
<21%	Kurang sekali

b. Tes

Tes merupakan instrumen penelitian yang dapat digunakan untuk mengukur kemampuan dasar dan pencaipan dalam proses pembelajaran (Arikunto, 2010:266).

c. Dokumentasi

Metode dokumentasi merupakan mencari data mengenai halhal atau variabel yang berupa catatan, transkrip, buku, surat kabar, majalah, prasasti, notulen rapat, lengger, agenda, dan sebagainya (Siyoto & Sodik, 2015:77-78). Dokumentasi sangatlah dibutuhkan dalam penelitian ini karena merupakan bukti nyata berupa foto-foto pada saat penelitian berlangsung.

3. Instrumen Penelitian

Instrumen penelitian merupakan alat yang digunakan peneliti dalam proses pengumpulan data agar mempermudah pekerjaan dengan hasil yang lebih baik (Arikunto, 2010:203). Dalam penelitian ini instrumen penelitian yang digunakan adalah angket ahli media, angket ahli materi, dan tes tertulis berbentuk uraian berupa *pretest* dan *posttest* untuk mengukur kemampuan berpikir kritis.

Untuk menguji instrumen tersebut digunakan validitas butir soal dan reliabelitas. Untuk mengetahui item dalam instrumen tes yang digunakan baik harus memenuhi persyaratan dalam hal tingkat validitas, reliabelitas, daya pembeda, dan tingkat kesukaran soal.

a. Validitas

Menurut (Hidayat, 2021:12) suatu intrumen penelitian agar bisa dikatakan sebagai intrumen penelitian yang sesuai stamdar atau layak, maka instrumen tersebut haruslah valid. Aiken (1985) merumuskan formula Aiken's V untuk menghitung content-validity coefficient yang didasarkan pada hasil penilaian dari panel ahli sebanyak n orang terhadap suatu aitem dari segi sejauh mana aitem tersebut mewakili konstrak yang diukur. Formula yang diajukan oleh Aiken adalah sebagai berikut (dalam Azwar, 2012:113):

$$V = \sum \frac{S}{[n(c-1)]}$$

Keterangan:

$$S = r - lo$$

Lo = angka penilaian validitas terendah

c = angka penilaian validitas tertinggi

r = angka yang diberikan oleh penilai

n = banyak validator

Dengan kriteria:

< 0, 4 : Lemah

0,4-0,92 : Sedang

> 0,92 : Tinggi

b. Reliabilitas

Reliabilitas menunjukan ketepatan dan keakuratan suatu alat ukur (Widodo, 2006). Uji reliabelitas dimaksudkan untuk mengukur tingkat konsistensi instrumen yang digunakan (Sofanudin, 2020). Azwar (dalam Sofanudin, 2020) mengatakan instrumenn dikatakan reliabel apabila nilai alpha $cronbacch \geq 0,60$ dengan perhitungan sebgaia berikut :

$$r_{11} = \left(\frac{n}{n-1}\right) \left(1 - \frac{\sum \sigma_b^2}{\sigma_t^2}\right)$$

Keterangan:

 r_{11} = reliabilitas yang ingin dicari

n = banyaknya item soal

 $\sum \sigma_b^2$ = jumlah varians item soal

 σ_t^2 = variansi skor total

c. Taraf Kesukaran

Taraf kesukaran digunakan untuk melihat apakah soal yang diujikan terlalu mudah atau terlalu susah. Soal yang diujikan juga harus memperhitungkan tingkat kesukarannya. Menurut Sumiati (Sumiati et al., 2018) untuk menghitung taraf kesukaran soal uraian :

1. Menghitung rata rata skor tiap butir soal

$$Rata - rata = \frac{jumlah\ skor\ peserta\ didik\ tiap\ butir\ soal}{jumlah\ skor\ peserta\ didik}$$

2. Menghitung taraf kesukaran

$$Taraf\ Kesukaran = \frac{Rata-rata}{skor\ maksimal\ tiap\ soal}$$

3. Membandingkan taraf kesukaran dengan kriteria berikut :

$$0,00-0,30 = sukar$$

$$0,31-0,70 = sedang$$

$$0.71-1.00 = \text{mudah}$$

Untuk menyusun suatu soal harus mempertimbangkan tingkat kesukaran soal. Soal yang baik adalah soal memiliki tingkat kesukaran yang proporsional. Perhitungan proporsi tingkat kesukaran soal dapat dibuat sebagai berikut :

- a) Soal sukar 25%, soal sedang 50%, soal mudah 25%, atau
- b) Soal sukar 20%, soal sedang 60%, soal mudah 20%, atau
- c) Soal sukar 15%, soal sedang 70%, soal mudah 15%.

d. Daya Pembeda

Daya pembeda soal merupakan kemampuan soal untuk membedakan antara siswa dengan kemampuan penguasaan materi yang baik dan yang kurang (Susanti, 2021:113)

Menurut Zainal Arifin (dalam Yolanda, 2020:80) untuk menghitung daya pembeda soal uraian, perlu menempuh langkah-langkah sebagai berikut :

- 1) Menghitung jumlah skor total tiap peserta didik.
- 2) Mengurutkan skor total mulai dari skor terbesar sampai dengan skor terkecil.
- Menetapkan kelompok atas dan kelompok bawah. Jika jumlah peserta didik banyak (di atas 30) dapat ditetapkan 27%.
- 4) Menghitung rata-rata skor untuk masing-masing kelompok (kelompok atas maupun kelompok bawah).
- 5) Menghitung daya pembeda soal dengan rumus:

$$DP = \frac{\bar{X}_{KA} - \bar{X}_{KB}}{Skor\ Maks}$$

Keterangan:

DP = Daya Pembeda

 \bar{X}_{KA} = Rata – rata siswa kelompok atas

 \bar{X}_{KB} = Rata – rata siswa kelompok bawah

Skor Maks = skor maksimum tiap soal (Arifin, 2014:133)

Membandingkan daya pembeda dengan klasifikasi berikut:

D: 0 - 0.20: jelek (poor)

D: 0.21 - 0.40: cukup (satisfactory)

D: 0.41 - 0.70: baik (good)

D: 0.71 - 1.00: sangat baik (excellent)

D : Bertanda negatif : semuanya tidak baik

4. Analisis Interpretasi Data

a. Analisis Awal

Dalam analisis awal data yang digunakan adalah nilai UTS atau nilai ulangan yang digunakan untuk uji normalitas dan uji homogenitas.

1) Uji Normalitas

Uji normalitas dilakukan untuk mengetahui apakah data kedua kelas berdistribusi normal atau tidak. Analisis yang digunakan adalah uji *Liliefors*.

H_o: Sampel dari populasi berdistribusi normal.

H₁: Sampel tidak dari populasi berdistribusi normal.

Adapun langkah-langkah dalam uji Lilliefors menurut Budiyono (Budiyono, 2016) sebagai berikut :

i) Menentukan H_0 dan H_1

 H_0 : sampel berasal dari populasi berdistribusi normal

 H_1 : sampel tidak berasal dari populaasi berdistribusi normal

- ii) Menentukan taraf signifikan $\alpha = 0.05$
- iii) Statistika uji

$$L = Maks|F(z_i) - S(z_i)|$$

Dengan:

$$z_i = \frac{x_i - \bar{x}}{s}$$

$$F(z_i) = P(Z \le z); Z \sim N(0,1);$$

 $S(z_i) = proporsi\ cacah\ Z \le z_i\ terhadap\ seluruh\ z$

- iv) Komputasi
- v) Daerah Kritis

$$DK = \{L_{hitung} | L_{hitung} > L_{tabel} \}$$

vi) Keputusan uji

 H_0 diterima jika $L \notin DK$

 H_0 ditolak jika $L \epsilon D K$

- vii) Kesimpulan
 - $L_{hitung} \le L_{tabel}$, maka sampel berasal dari populasi yang berdistribusi normal.
 - $L_{hitung} > L_{tabel}$, maka sampel tidak berasal dari populasi yang berdistribusi normal.

2) Homogenitas

Uji homogenitas digunakan untuk mengetahui seragam atau tidaknya variansi pada sampel yang diambil. Adapun langkah uji homogenitas menurut Budiyono (Budiyono, 2016) sebagai berikut:

i) Menentukan H_0 dan H_1

 $H_0: \sigma_1^2 = \sigma_2^2$ (varians pada kelas eksperimen dan kontrol homogen)

 $H_1:\sigma_1^2\neq\sigma_2^2$ (varians pada kelas eksperimen dan kontrol tidak homogen)

- ii) Menentukan taraf signifikan $\alpha = 0.05$
- iii) Statistika uji:

$$b = \frac{\left[\left(S_1^2 \right)^{n_1 - 1} \left(S_2^2 \right)^{n_2 - 1} ... \left(S_k^2 \right)^{n_k - 1} \right]^{\frac{1}{N - k}}}{S_p^2}$$

iv) Daerah Kritis

$$Dk = \{b_{hitung} | b_{hitung} < b_{tabel} \}$$

v) Keputusan uji

 H_0 diterima jika $b \notin DK$

 H_0 ditolak jika $b \in DK$

- vi) Kesimpulan
 - $b_{hitung} \ge b_{tabel}$, maka varians pada kelas eksperimen dan kontrol homogen.
 - $b_{hitung} < b_{tabel}$, maka varians pada kelas eksperimen dan kontrol tidak homogen.

3) Uji t Dua Pihak

Uji t dua pihak dilakukan untuk mengetahui kesamaan ratarata hasil belajar dari kelas eksperimen dan kontrol. Sebelum penelitian dilakukan, kedua kelas harus lah memiliki kemampuan yang seimbang.

Hipotesis yang digunakan adalah sebagai berikut :

 H_0 : $\mu_1 = \mu_2$ (rerata hasil belajar kelas eksperimen sama dengan hasil belajar kelas kontrol).

 H_1 : $\mu_1 \neq \mu_2$ (rerata hasil belajar kelas eksperimen tidak sama dengan hasil belajar kelas kontrol).

Uji statistik yang digunakan menurut Sudjana (2005:239) jika kedua varians sama atau homegen adalah sebagai berikut:

$$t = \frac{\overline{x_1} - \overline{x_2}}{s\sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} \text{ dengan } s^2 = \frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}$$

Keterangan:

t = perbedaan rerata hasil belajar

 $\overline{x_1}$ = nilai rata-rata sampel eksperimen

 $\overline{x_2}$ = nilai rata-rata sampel kontrol

s = simpangan baku

 n_1 = jumlh sampel kelompok eksperimen

 n_2 = jumlh sampel kelompok eksperimen

 s_1^2 = varian kelompok eksperimen

 s_2^2 = varian kelompok kontrol

Kriteria: terima H_0 jika $-t_{1-1/2\alpha} < t < t_{1-1/2\alpha}$

$$Dk = (n_1 + n_2 - 2)$$

Uji statistik yang digunakan menurut Sudjana (2005:241) jika kedua varians tidak sama atau tidak homegen adalah sebagai berikut :

$$t' = \frac{\overline{x_1} - \overline{x_2}}{s\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}} \text{dengan } s^2 = \frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}$$

Keterangan:

t = perbedaan rerata hasil belajar

 $\overline{x_1}$ = nilai rata-rata sampel eksperimen

 $\overline{x_2}$ = nilai rata-rata sampel kontrol

s = simpangan baku

 n_1 = jumlh sampel kelompok eksperimen

 n_2 = jumlh sampel kelompok eksperimen

 s_1^2 = varian kelompok eksperimen

 s_2^2 = varian kelompok kontrol

Kriteria : terima
$$H_0$$
 jika $\frac{-w_{1t_1+}\,w_{2t_2}}{w_1+w_2} < t' < \frac{w_{1t_1+}\,w_{2t_2}}{w_1+w_2}$

Dengan

$$w_1 = \frac{{s_1}^2}{n_1}$$

$$w_2 = \frac{{s_2}^2}{n_2}$$

$$t_1 = t(1-\frac{1}{2} \propto), (n_1-1)$$

$$t_2 = t(1-\frac{1}{2} \propto), (n_2-1)$$

Dk masing-masing adalah $(n_1 - 1)$ dan $(n_2 - 1)$

b. Analisis Akhir

Dalam analisis akhir bertujuan untuk menganalisis hasil post test kemampuan berpikir kritis siswa. Apakah terdapat perbedaan kemmapuan berpikir kritis pada kelas eksperimen dan kentrol. Sebelum dilakukan analisis maka perlu dilakukan uji:

1) Uji Normalitas

Uji normalitas dilakukan untuk mengetahui apakah data kedua kelas berdistribusi normal atau tidak. Analisis yang digunakan adalah uji *Liliefors*.

H_o: Sampel dari populasi berdistribusi normal.

H₁: Sampel tidak dari populasi berdistribusi normal.

Adapun langkah-langkah dalam uji Lilliefors menurut Budiyono (Budiyono, 2016) sebagai berikut :

i) Menentukan H_0 dan H_1

 H_0 : sampel berasal dari populasi berdistribusi normal

 H_1 : sampel tidak berasal dari populaasi berdistribusi normal

- ii) Menentukan taraf signifikan $\alpha = 0.05$
- iii) Statistika uji

$$L = Maks|F(z_i) - S(z_i)|$$

Dengan:

$$z_i = \frac{x_i - \bar{x}}{s}$$

$$F(z_i) = P(Z \le z); Z \sim N(0,1);$$

 $S(z_i) = proporsi\ cacah\ Z \le z_i$ terhadap seluruh z

- iv) Komputasi
- v) Daerah Kritis

$$DK = \{L_{hitung} | L_{hitung} > L_{tabel} \}$$

vi) Keputusan uji

 H_0 diterima jika $L \notin DK$

 H_0 ditolak jika $L \in DK$

- vii) Kesimpulan
 - $L_{hitung} \le L_{tabel}$, maka sampel berasal dari populasi yang berdistribusi normal.

• $L_{hitung} > L_{tabel}$, maka sampel tidak berasal dari populasi yang berdistribusi normal.

2) Homogenitas

Uji homogenitas digunakan untuk mengetahui seragam atau tidaknya variansi pada sampel yang diambil. Adapun langkah uji homogenitas menurut Budiyono (Budiyono, 2016) sebagai berikut:

i) Menentukan H_0 dan H_1

 $H_0: \sigma_1^2 = \sigma_2^2$ (varians pada kelas eksperimen dan kontrol homogen)

 $H_1:\sigma_1^2 \neq \sigma_2^2$ (varians pada kelas eksperimen dan kontrol tidak homogen)

- ii) Menentukan taraf signifikan $\alpha = 0.05$
- iii) Statistika uji:

$$b = \frac{\left[(s_1^2)^{n_1 - 1} (s_2^2)^{n_2 - 1} ... (s_k^2)^{n_k - 1} \right]^{\frac{1}{N - k}}}{s_p^2}$$

iv) Daerah Kritis

$$Dk = \{b_{hitung} | b_{hitung} < b_{tabel} \}$$

v) Keputusan uji

 H_0 diterima jika $b \notin DK$

 H_0 ditolak jika $b \in DK$

- vi) Kesimpulan
 - $b_{hitung} \ge b_{tabel}$, maka varians pada kelas eksperimen dan kontrol homogen.
 - $b_{hitung} < b_{tabel}$, maka varians pada kelas eksperimen dan kontrol tidak homogen.

Kriteria efektivitas

a. Uji t satu pihak kanan

Uji t satu pihak digunakan untuk mengetahui bahwa kemampuan berpikir kritis siswa setelah mendapat pembelajaran menggunakan *e-modul* berbantuan *wolfran mathematica* lebih baik dari pada pembelajaran konvensional.

Uji t satu pihak yang digunakan adalah satu pihak kanan. Dalam uji ini yang diuji adalah hasil *posttest*, dengan cara sebagai berikut:

Ho: $\mu_1 \leq \mu_2$

Ha : $\mu_1 > \mu_2$

Jika kedua varians sama $\sigma_1 = \sigma_2$, maka rumus yang digunakan adalah:

$$t = \frac{\overline{x_1} - \overline{x_2}}{s\sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}$$

dengan,

$$s^2 = \frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}$$

Keterangan:

t = Perbedaan rata-rata hasil

 $\overline{x_1}$ = Nilai rata-rata kelompok eksperimen

 $\overline{x_2}$ = Nilai rata-rata kelompok kontrol

 n_1 = Jumlah subyek kelompok eksperimen

n₂ = Jumlah subyek kelompok kontrol

 s_1^2 = Varians kelompok eksperimen

 s_2^2 = Varians kelompok kontrol

Kriteria pengujiannya adalah

Ho diterima jika $t < t_{(1-\alpha)}$ dan

Ho ditolak jika $t \ge t_{(1-\alpha)}$

Jika kedua varian tidak sama $\sigma_1 \neq \sigma_2$, maka statistik yang digunakan adalah:

$$t = \frac{\overline{x_1} - \overline{x_2}}{\sqrt{\left(\frac{S_1^2}{n_1}\right) + \left(\frac{S_2^2}{n_2}\right)}}$$

Keterangan:

t = Perbedaan rata-rata hasil

 $\overline{x_1}$ = Nilai rata-rata kelompok eksperimen

 $\overline{x_2}$ = Nilai rata-rata kelompok kontrol

 n_1 = Jumlah subyek kelompok eksperimen

n₂ = Jumlah subyek kelompok kontrol

 s_1^2 = Varians kelompok eksperimen

 s_2^2 = Varians kelompok kontrol

Kriteria : tolak hipotesis Ho jika $t \ge \frac{w_1t_1+w_2t_2}{w_1+w_2}$ dan terima Ho jika terjadi sebaliknya.

Dengan
$$w_1 = \frac{s_1^2}{n_1}$$
; $w_2 = \frac{s_2^{0-2}}{n_2}$ dan

$$t_1 = t_{\left(1 - \frac{1}{2}\alpha\right), (n_1 - 1)} \operatorname{dan} t_2 = t_{\left(1 - \frac{1}{2}\alpha\right), (n_2 - 1)}.$$

Peluang penggunaan daftar distibusi t adalah $(1 - \alpha)$ sedangkan

Dk untuk masing-masing adalah $(n_1 - 1)$ dan $(n_2 - 1)$.

b. Uji ketuntasan hasil kemampuan berpikir kritis

uji ketuntasan hasil kemampuan berpikir kritis pada penelitian ini meliputu ketuntasan belajar individu dan ketuntasan belajar klasikal.

1) Ketuntasan Belajar Individu (KBI)

Uji ini dilakukan guna mengetahui hasil belajar mencapai ketuntasan atau tidak. Siswa dikatakan mencapai ketuntasan belajar jika memperoleh nilai ≥ KKM (70).

Rumus yang digunakan dalam menghitung ketuntasan belajar individu adalah sebagai berikut:

$$KBI = \frac{\text{jumlah jawaban yang benar}}{\text{jumlah skor maksimal}} \times 100$$

Jika siswa mencapai mencapai batas minimal yaitu 70 maka siswa dikatakan tuntas secara individu

2) Ketuntasan Belajar Klasikal (KBK)

Uji ini digunakan guna mengetahui apakah kelas yang digunakan dalam penelitian dapat mencapai ketuntasan secara klasikal dengan syarat terdapat ≥ 75% siswa yang tuntas. Rumus yang digunakna untuk menghitung ketuntasan belajar klasikal adalah sebagai berikut :

$$KBI = \frac{\text{jumlah siswa yang tuntas}}{\text{jumlah seluruh siswa}} \times 100\%$$

c. Uji N-Gain

Uji ini digunakann untuk menghitung peningkatan kemampuan berpikir kritis yang terjadi sebelum dan sesudah pembelajaran yang dihitung dengan rumus gain ternormalisasi (N-Gain), yaitu:

$$N - Gain (g) = \frac{Skor \ posttest - Skor \ pretest}{Skor \ maksimal \ ideal - Skor \ pretest}$$

Hasil perhitungan gain kemudian diinterpretasikan dengan menggunakan klasifikasi sebagai berikut:

Tabel 3 4 Klasifikasi Gain (g)

Nilai Gain Ternormalisasi	Interpretasi
$-1,00 \le (g) < 0,00$	Terjadi penurunan
$-1,00 \le (g) < 0,00$	Tidak terjadi peningkatan
(g) < 0.00	Rendah
$0.30 \le (g) < 0.70$	Sedang
$0.70 \le (g) < 1.00$	Tinggi

(Putri & Zuhdi, 2018)

Tabel 3 5 Kategori Tafsiran Evektifitas N-Gain

Persentase (%)	Tafsiran
>76	Efektif
56-75	Cukup efektif

40-55	Kurang efektif
<40	Tidak efektif

(T. H. Setiawan & Aden, 2020)

5. Revisi Produk

Pada penelitian ini, peneliti melakukan revisi produk apabila dalam pemakaian dikelas pada *e-modul* terlihat dari validasi ahli, materi, dan tanggapan siswa.

BAB IV HASIL PENELITIAN DAN PEMBAHASAN

A. Hasil Penelitian

Penelitian dan pengembangan ini berjudul "Pengembangan *E-Modul* berbantuan *Wolfram Mathematica* Untuk Meningkatkan Kemampuan Berpikir Kritis Siswa" penelitian ini dilakukan di SMP Negeri 2 Weleri yang terletak di jalan Bahari No. 2 Rowosari, Kecamatan Rowosari, Kabupaten Kendal. Kelas yang digunakan pada penelitian ini adalah kelas VIII F dan kelas VIII G. Kelas VIII F merupakan kelas yang digunakan sebagai kelas eksperimen yang menggunakan *E-Modul* berbantuan *Wolfram Mathematica* dalam pembelajaran. Dan kelas VIII G merupakan kelas yang digunakan sebagai kelas kontrol yaitu kelas dengan pembelajaran konvensional.

Penelitian ini dilakukan dengan menggunakan prosedur pengembangan yang mengacu pada model ADDIE (*Analysis, Design, Development, Implementation, Evaluation*). Dengan materi yang digunakan dalam penelitian ini yaitu Sistem Persamaan Linear Dua Variabel.

Berikut adalah penjelasan hasil penelitian:

1. Analisis (Analysis)

Pada tahap *analysis* ini peneliti melakukan analisis kebutuhan peserta didik, analisis kurikulum, dan analisis materi.

a. Analisis Kebutuhan Peserta didik

Analisis kebutuhan peserta didik dilakukan dalam observasi awal untuk mengumpulkan data tentang kebutuhan peserta didik. Pengumpulan data dilakukan dengan wawancara salah satu guru matematika SMP Negeri 2 Weleri yang dilaksanakan pada hari kamis, 20 Mei 2022 di SMP Negeri 2 Weleri. Adapun hasil analisis kebutuhan peserta didik dapat dilihat pada Tabel 4.1 sebagai berikut:

Tabel 4 1 Hasil Analisis Kebutuhan Peserta Didik

SMP Negeri 2 Weleri

Sumber Data	Metode Pengumpulan	Hasil Wawancara
Guru matematika SMP Negeri 2 Weleri	Wawancara	 Dalam proses kegiatan pembelajaran, sumber belajar yang digunakan siswa hanya berupa buku teks dan ringkasan materi berbentuk pdf yang dikirimkan oleh guru. Penggunaan media pembelajaran masih kurang Kesulitan dalam memahami materi yang disebabkan kurangnya ketertarikan siswa dalam pembelajaran. Kurangnya kemampuan berpikir kritis siswa. Peserta didik membutuhkan media pembelajaran yang menarik dan mudah digunakan.

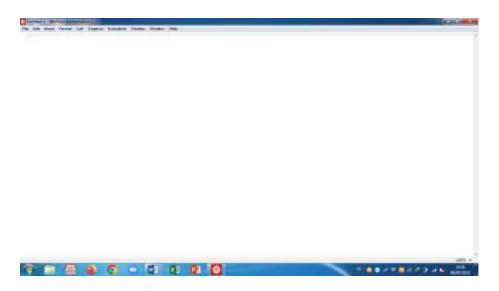
b. Analisis Kurikulum

Analisis kurikulum dilakukan untuk mengetahui kurikulum yang digunakan disekolah sebagai acuan dalam mengembangkan *E-Modul* berbantuan *Wolfram Mathematica*. Kurikulum yang digunakan di SMP Negeri 2 Weleri adalah kurikulum 2013.

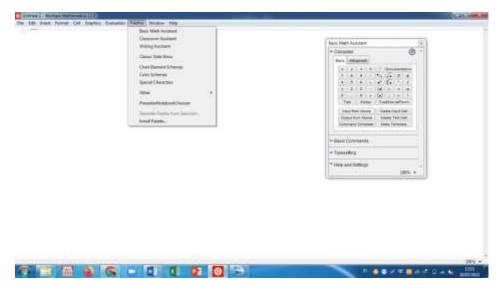
c. Analisis Materi

Berdasarkan kurikulum 2013 pada mata pembelajaran matematika kelas VIII salah satu materi yang dipelajari adalah Persamaan Linear Dua Variabel. Berdasarkan analisis kurikulum peneliti menggunakan materi Persamaan Linear Dua Variabel sebagai materi dalam *E-Modul* berbantuan *Wolfram Mathematica*.

2. Perencanaan (Design)

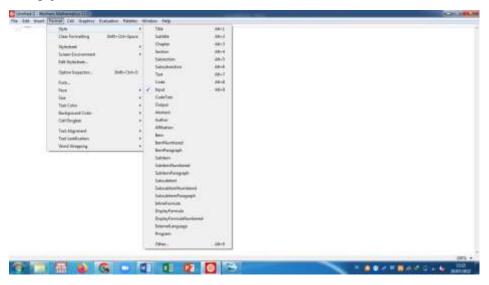

Dalam tahap *design* ini peneliti membuat rancangan *e-modul* berbantuan *Wolfram Mathematica*. Hal-hal yang diperlukan dalam merancang produk ini adalah menentukan dan menyusun materi serta kompetensi dasar yang akan digunakan. Adapun langkah langkah dalam pembuatan *E-Modul* berbantuan *Wolfram Mathematica* sebagai berikut:

- Sebelum pembuatan produk dimulai, peneliti menyiapkan dan mengumpulkan bahan materi yang akan digunakan. Materi yang digunakan pada *e-modul* ini adalah Persamaan Linear Dua Variabel kelas VIII yang diambil dari buku Matematika Kelas VIII SMP/MTs Semester 1.
- 2. Menyiapkan contoh soal, soal tes kemampuan berpikir kritis, dan memilih video pembelajaran dari *youtube* yang sesuai dengan materi yang akan digunakan dalam *E-Modul* berbantuan *Wolfram Mathematica*.
- 3. Menyusun materi yang akan di masukkan kedalam *e-modul* berbantuan *Wolfram Mathematica*. Langkah pertama buka software *wolfram mathematica* 12, kemudian klik "*New Document*"

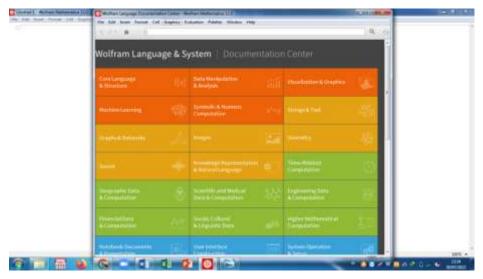

Gambar 4 1 halaman utama wolfram mathematica 12

4. Setelah mengeklik "New Document" akan muncul command window. Command window digunakan untuk menjalankan perintah dengan mengetikkan barisan ekspresi.

Gambar 4 2lembar kerja wolfram mathematica 12


Pada tampilan *command windows* terdapat banyak toolbar yang dapat digunakan dalam menyusun materi yang akan dimasukkan ke dalam *e-modul*. Salah satu toolbar yang bisa digunakan yaitu toolbar pallets yang berisi berbagai macam tools yang dapat digunakan untuk memasukkan simbol simbol matematika.

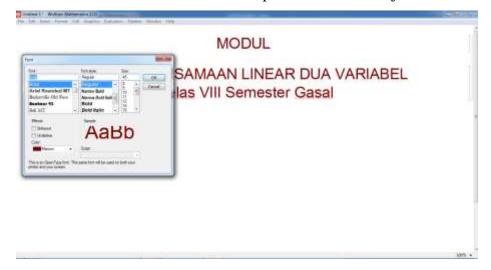
Gambar 4 3tampilan toollbar pallets di wolfram mathematica 12


Selain toollbar "pallets", terdapat toolbar format yang memungkinkan pengguna *Mathematica* memiliki *default* yang biasa digunakan dalam penulisan standar matematika. Fungsi-fungsi yang ada

dalam "format" seperti *Style Sheet* dan *Style* memiliki librari yang biasa digunakan oleh pengguna dalam menuliskan artikel, presentasi, atau mengajar.

Gambar 4 4tampilan toollbar format di wolfram mathematica 12

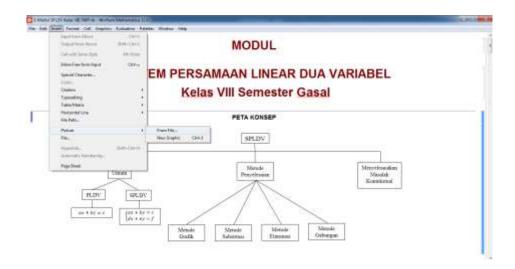
Contoh yang digunakan dalam penyusunan materi pada e-modul ini adalah "Input". Selain "palltes" dan "format", mathematica 12 dilengkapi toolbar "help" yang dapat digunakan



Gambar 4 5tampilan toollbar help di wolfram mathematica 12

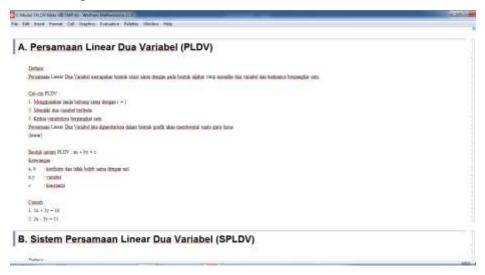
Toollbar "help" digunakan untuk menunjang pemakaian sebuah software, biasanya software tersebut dilengkapi dengan help manual dan

online. Untuk software Mathematica, beberapa hal yang dapat dikatakan sebagai keunggulan adalah :


- Manual penggunaan Mathematica dapat didownload di Information Center on Web yang terdapat dalam toolbar Help
- 2. Dedikasi yang sangat tinggi dari pencipta Mathematica yakni Stephen Wolfram untuk mengembangkan ilmu pengetahuan dengan mengembangkan Wolfram Research Center yang juga dapat dilihat di Wolfram Research on Web Help yang digunakan, hal yang sama dapat dijumpai pada kebanyakan software matematika, sangat menunjang dan memuat banyak contoh.
- 5. Setelah membuka *command window*, peneliti menuliskan judul materi

Gambar 4 6 judul materi

Dalam penulisan judul peneiliti langsung mengetik judul yang digunakan. Untuk mengedit tulisan bisa menggunakan *toolbar* "format" kemudian klik "font"


6. Setelah menulis judul, peneliti memasukan peta konsep melalui gambar dengan cara mengeklik "insert — picture — from file"

Gambar 47 peta konsep

Peta konsep disisipkan melalui gambar yang sudah dibuat di *microsof word* yang kemudian di *screenshoot* agar bisa dimasukan dalam bentuk gambar ke *wolfram mathematica*.

7. Kemudian peneliti memasukan materi Persamaan Linear Dua Variabel

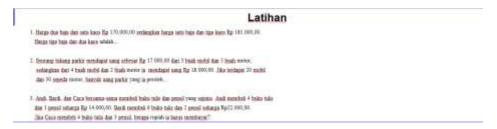
Gambar 48 materi SPLDV

Dalam memasukan materi, peneliti langsung mengetik materi yang diambil dari buku matematika kelas VIII materi SPLDV. Dalam menulis materi peneliti juga menggunakan simbol-simbol yang ada pada *toolbar pallets* dan *toollbar* format untuk mengganti warna dan ukuran font.

mathematica k menggunakan Wolfram Mathematica D. Mer.

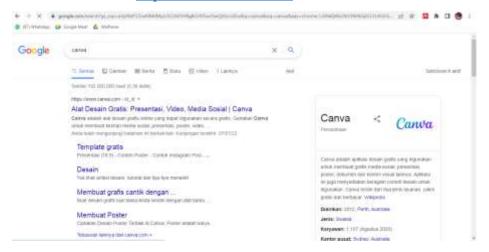
8. Menyisipkan contoh penyelesaian menggunakan bantuan wolfram

Gambar 4 9langkah penyelesaian menggunakan wolfram mathematica


Dalam menulis penyelesaian menggunakan wolfram matehmatica, peneliti menggunakan toolbar format kemudian memilih style kemudian memilih "input" untuk dapat menulis ekspresi matematika yang diinginkan.

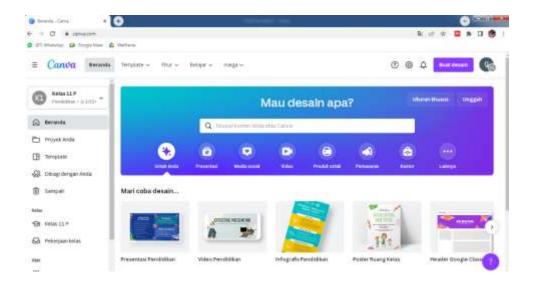
Gambar 4 10hasil penyelesaian menggunakan wolfram mathematica

Untuk dapat menjalankan perintah dan melihat hasil maka setelah memasukan ekspresi matematika harus menekan tombol "shift + enter"


9. Memasukan latihan soal

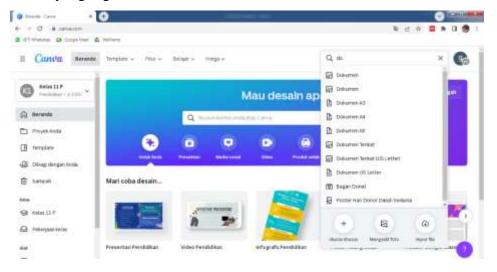
Gambar 4 11 latihan soal

Dalam memasukkan latihan soal, peneliti langsung menuliskan pada lembar kerja. Untuk mengatur ukuran font dapat melalui *toolbar* "format" kemudian klik "font"


10. Membuat Produk *E-Modul* berbantuan *Wolfram Mathematica* menggunakan bantuan *software* canva yang diakses secara *online*. Buka web canva melalui https://www.canva.com/

Gambar 4 12tampilan awal canva

Dalam mengakses canva dapat dilakukan secara online melalui web maupun secara offline dengan menginstall aplikasi melalui *playstore*. Dalam penyusunan *e-modul* ini peneliti mengakses canva secara onlien melalui web.


11. Setelah dibuka maka akan muncul tampilan beranda pada canva. Jika pengguna belum *log in* maka pengguna akan diarahkan untuk *log in* terlebih dahulu menggunakan akun *google* yang dimiliki

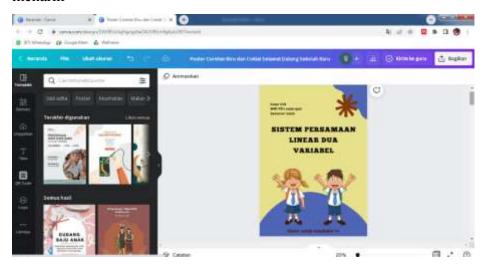
Gambar 4 13Tampilan beranda canva

Pada tampilan awal canva, disajikan banyak sekali *template* yang dapat digunakan pengguna untuk *mendesign* apa saja yang mereka inginkan.

12. Setelah muncul halaman beranda, lalu klik "Buat *Design*" dengan memilih ukuran "Dokumen A4". Ukuran A4 disesuaikan dengan ukuran standar modul yang digunakan

Gambar 4 14tampilan saat akan membuat design awal

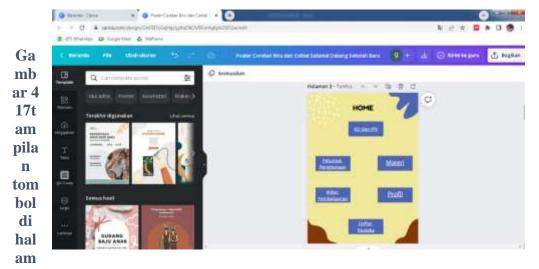
Pada tahap ini peneliti menentukan ukuran yang aka digunakan yang disesuaikan dengan kebutuhan.


13. Peneliti membuat design tampilan awal dengan memilih *background* yang akan digunakan

Gambar 4 15 Background yang digunakan

Pada tahap ini peneliti memilih warna, *backgroun*, dan *icon* yang akan dimasukan dalam tampilan awal *e-modul*.

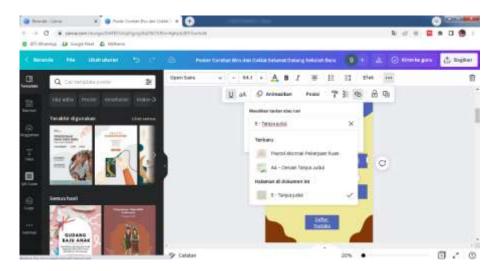
14. Setelah memilih warna untuk background, *kemudian* mendesign dengan memasukan judul dan beberapa gambar agar e-*modul* terlihat lebih menarik



Gambar 4 16 tampilan Background yang digunakan

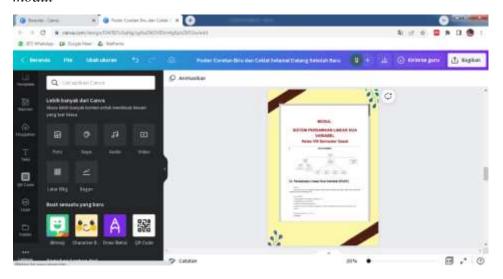
Dalam menulis judul, peneliti langsung menuliskan judul e-modul pada halaman awal, untuk mengganti jenis *font* dapat dipilih pada template

yang disedikan. Pengguna canva dapat dengan mudah memilih jenis *font* yang disediakan. Setalah judul, peneliti dapat memasukkan icon yang telah dipilih ke dalam tampilan awal e-modul


15. Selanjutnya membuat tombol yang akan digunakan dalam e-modul

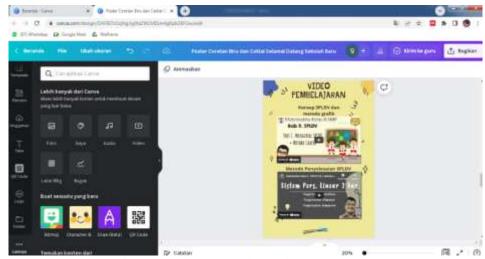
an utama

Dalam tahap ini peneliti membuat tombol dengan bantuan "elemen" dan memilih bentuk segi empat yang dapat diatur ukuran dan warna. Setelah membuat tombol, peneliti memberi keterangan pada tombol tersebut


16. Tombol yang telah dibuat kemudian diatur untuk tautan agar bisa menghubungkan ke halaman yang di inginkan

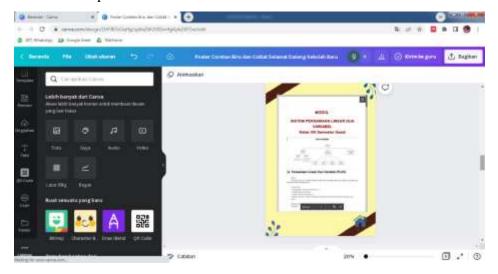
Gambar 4 18tampilan tautan pada tombol

Setelah tombol-tombol yang dibutuhkan sudah sesuai, kemudian di link kan ke halaman yang dituju agar pengguna dapat dengan mudah mengakses halaman yang diinginkan dari halaman utama


17. Langkah selanjutnya peneliti memasukan materi yang sudah disusun dengan berbantuan software wolfram mathematica yang sebelumnya di upload ke google drive kemudian link google drive di sematkan pada e-modul

Gambar 4 19tampilan materi

Untuk memuahkan pengguna, peneliti meng*upload* materi yang sudah disusun dengan bantuan *software mathematica* ke *googke drive* lalu menyisipakannya ke dalam *e-modul* dengan menyalin dan menempel *link* materi ke dalam *e-modul*


18. Selanjutnya memasukan video *youtube* yang telah dipilih untuk melengkapi *e-modul* dengan menyalin *link youtube* kemudian meyematkan pada *e-modul*

Gambar 4 20 tampilan video youtube

Video *youtube* yang ditampilkan sudah disesuaikan dengan materi yang dipilih dan IPK yang ada. Pada tahap ini *link* video disalin kemudian ditempel pada *e-modul* untuk melengkapi pengguna dalam belajar dan dapat membantu jika masih terdapat kesulitan dalam belajar.

19. Selanjutnya agar mempermudah pengguna maka disisipkan tombol bantuan berupa tombol "home"

Gambar 4 21tampilan tombol home

Penggunaan tombol-tombol bantuan dilakukan dengan mengunduh gambar tombol yang diinginkan kemudian memasukkan ke *e-modul* dengan cara klik "foto" kemudian memilih gambar yang dituju. Setelah

gambar tombol sudah masuk, tombol tersebut di *link* kan ke halaman yang dituju.

3. Pengembangan (Development)

Pada tahap pengembangan ini peneliti mengembangkan hasil rancangan *E-Modul* berbantuan *Wolfram Mathematica*. Produk yang dihasilkan pada pengembangan ini berupa *e-modul* (Modul Elektronik). Untuk mengetahui kekurangan-kekurangan yang terdapat dalam produk, maka produk perlu diperbaiki sehingga produk media pembelajaran akan lebih baik dan layak digunakan. Validator untuk memvalidasi produk adalah pihak yang ahli dalam bidang media pembelajaran dan materi.

a. Analisis Validasi Ahli Media

Produk pengambangan yang diserahkan kepada ahli media pembelajaran untuk divalidasi berupa link *e-modul* berupa tampilan canva. Ahli media pembelajaran yang memvalidasi dari dosen Universitas PGRI Semarang yaitu:

Tabel 4 2 Validator Ahli Media

Ahli Media	Nama	Asal Instansi
1	Dr. Aryo Andri	Universitas PGRI Semarang
	Nugroho, S. Si., M. Pd.	
2	Ika Menarianti, S.	Universitas PGRI Semarang
	Kom., M. Kom.	

setelah dilakukan validasi oleh ahli materi tersebut, maka hasil dari validasi dapat disimpulkan sebagai berikut:

1) Penyajian Data

Hasil validasi ahli media disajikan pada Lampiran 12b, merupakan skor yang diperoleh dari penilaian oleh ahli media terhadap *e-modul* berbantuan *wolfram mathematica*. Hasil penilaian dari ahli media dapat dijadikan pertimbangan untuk memperbaiki atau merevisi produk.

2) Analisis Data

Analisis data dilakukan setelah peneliti memperoleh hasil validasi dari validator untuk menentukan kelayakan produk untuk

proses belajar mengajar. Hasil validasi dan penilaian ahli media untuk setiap aspek disajikan dalam Tabel 4.3.

Tabel 4 3 Penilaian Aspek Ahli Media

BUTIR	Pen	ilai	a 1	₀ 2	jumlah	V	Kriteria
DUTIK	1	2	81	s2	S	V	Kinena
1-20	69	66	53	50	103	0,80469	Sedang
	Reliabelitas						Reliabel

Berdasarkan Tabel 4.3 penilaian aspek media oleh ahli media meliputi: (1) aspek Materi/Isi, (2) aspek Penyajian, (3) aspek Kebahasaan. Perhitungan tersebut menunjukan skor sebesar 0,80469 dengan kategori "Sedang", sehingga produk media pembelajaran layak digunakan. Namun disisi lain, validator menyimpulkan bahwa media pembelajaran "layak diujicobakan di lapangan dengan revisi", validator juga memberikan kometar dan saran perbaikan terhadap produk agar nantinya produk dapat lebih baik untuk digunakan.

3) Revisi Produk

Berdasarkan hasil angket penilaian oleh validator ahli media, terdapat beberapa komentar dan saran perbaikan terhadap produk media pembelajaran sebagai pertimbangan agar produk media pembelajaran lebih baik. Adapun komentar dan saran perbaikan yang diberikan oleh validator ahli media dapat dilihar pada Tabel 4.4 sebagai berikut:

Tabel 4 4 Saran Perbaikan Ahli Media

	Dr. Aryo Andri Nugroho, S. Si., M. Pd.			
Komentar	Sebelum Revisi	Hasil perbaikan		
dan Saran				
Perbaikan				
Pada				
halaman				

awal diberi keterangan untuk ke SISTEM PERSAMAAN halaman LINEAR DUA LINEAR DUA VARIABEL VARIABEL selanjutny a Gambar 4 23 Pemberian Gambar 4 22 halaman awal keterangan untuk ke sebelum revisi halama selanjutnya Pada ΚI **IPK** dan ditambahk an tujuan pembelajar an Gambar 4 25 Tampilan KI I Gambar 4 24 tampilan KI setelah revisi KD sebelum revisi Pada petunjuk PETUNJUK PENGGUNAAN PETUNJUK PENGGUNAAN dilengkapi 1 III I to with tops to prior conducts 1 lit ik firk untuk dapat mengakeni e-musikal ini 2 Dans para receiver continues mendente o-recht Side fink yorkibe yeng terodo celuk mengetan Vales pergrasan mater Cide fine matici celuk dice receptores solder yang tombol 5 Mile See youtube yeary broader untuk mangaloss video pergerasan monet. A 600 fine modul arms tips mengatias motori home dan Se flaviace with a natheration Serial at employ faith which more igner, it has been a tended; memobiled more i day contentional and register to than song other than along a name S pelujus dangan falik satup matemyang abadi A samula memuhana materi dan contuk-sora next Gambar 4 27 Gambar 4 26 tampilan petunjuk sebelum revisi penambahan tombol

	T	
D 1		
Pada menu	700470	
utama	HOME /	
untuk halaman	NAME HADOW	
	EAL	
utama	Personale Manage	
sebaiknya tidak perlu		
tidak periu	Seminalism Profit	
	Entire.	
	1110	
	C 1 420 1 4	Gambar 4 29
	Gambar 4 28 gambar tampi halaman utama sebelum rev	
	naiaman aiama sebelam rev	halaman utama
		HOME
		ND day PK
		Maria Maleri
		Manu Profit
		V DOS
		Candada
	Ika Menarianti, S. Kom.	M. Kom.
Komentar	Sebelum Revisi	Hasil perbaikan
dan Saran		1
Perbaikan		
Tampilan	-	-
media		
baik,		
mudah		
digunakan,		
menarik		
hanya saja		
membutuh		
kan		
koneksi		
internet	si Ahli Matari	

b. Analisis Validasi Ahli Materi

Validasi materi digunakan untuk mengetahui kevalidan produk berdasarkan aspek materi terhadap media yang dibuat. Adapun validator yang memvalidasi materi pada media pembelajaran tersebut dapat dilihat pada Tabel 4.5.

Tabel 4 5 Validator Ahli Materi

No	Nama	Jabatan	Asal Instansi
1	Dr. Aryo Andri Nugroho, S. Si., M. Pd.	Dosen Pendidikan Matematika	Universitas PGRI Semarang
2	Titik Setyawati, S.Pd	Guru Matematika	SMP Negeri 2 Weleri

1) Penyajian Data

Hasil validasi ahli materi disajikan pada Lampiran 13b, merupakan skor yang diperoleh dari penilaian oleh ahli materi terhadap *e-modul* berbantuan *wolfram mathematica*. Hasil penilaian dari ahli materi dapat dijadikan pertimbangan untuk memperbaiki atau merevisi produk.

2) Analisis Data

Analisis data dilakukan setelah peneliti memeroleh hasil validasi dari validator untuk menentukan kelayakan produk untuk proses belajar mengajar. Hasil validasi dan penilaian ahli materi untuk setiap aspek disajikan dalam Tabel 4.6.

Tabel 4 6 Penilaian Ahli Materi

DUTID	Pen	ilai	a 1	a2	jumlah	N/	Vnitonio
BUTIR	1	2	81	s2	S	V	Kriteria
Jumlah	68	72	52	56	108	0,84375	Sedang
Reliabelitas					0,800	Reliabel	

Berdasarkan Tabel 4.6 penilaian aspek materi oleh ahli materi meliputi: (1) aspek Meteri/Isi, (2) aspek penyajian, dan (3)

aspek kebahasaan. Perhitungan tersebut menunjukan skor 0,84375 dengan kriteria "Sedang", sehingga produk media pembelajaran layak digunakan. Namun disisi lain, validator menyimpulkan bahwa materi pembelajaran "layak diujicobakan di lapangan dengan revisi", validator juga memberikan komentar dan saran perbaikan terhadap produk agar nantinya produk dapat lebih baik untuk digunakan.

3) Revisi Data

Berdasarkan hasil angket penilaian oleh validator ahli materi, terdapat beberapa komentar dan saran perbaikan terhadap produk media pembelajaran sebagai pertimbangan agar produk media pembelajaran lebih sempurna. Adapun komentar dan saran perbaikan yang diberikan oleh validator ahli media dapat dilihat pada Tabel 4.7 sebagai berikut

Tabel 47 Saran Perbaikan Ahli Media

	Dr. Aryo Andri Nugroho, S.	51., IVI. I U.
Komentar dan Saran Perbaikan	Sebelum Revisi	Hasil perbaikan
Pada e-modul		
penggunaan	4) E-Mater SP-CM Kelse VIII SMR rep	A. C. PRINCE SPECIAl Nation WITE SPAP review manifestors reti
mathematica	Margalistics Maly pressures as a series framework to 3 to 5	. Substitution of a 2-2 to distance the constant $ \begin{array}{c} (a+b) + 1 \\ (a+b) + 1 \end{array} $
kurang	for the property of the prope	x-3-1
maksimal	0 - 2 p - y - y - 2	The Management Project Contents of the Conten

	Gambar 4 30 penggunaan wolfram mathematica belum maksimal di setiap contoh soal	Gambar 4 31 Pada setiap contoh soal diberikan penyelesaian menggunakan wolfram mathematica
Komentar	Sebelum Revisi	Hasil perbaikan
dan Saran		
Perbaikan		

Ada latihan # E-Hodul SPLDV Kelas VIII SHP, op E-Madul SPLDV Kellus VIII SMP revox validator.nb Ssoal yang (Exists) 1953 billy Emiss Lockson poly lights personant none 4.5 I keelboordur sitik briikh unter degan mil kurang A.F. resided i kanen sesuai x = 1 substitution with x = 1 for unide outs personne cons $1.3x \pm 3y \pm 10$ 4-1-3 3.993 2: 24 - 3y = 15 975-5 H=-2B. Sistem Persamaan Linear Dua Variabel (SPLDV) Select (2 x : y = 13, x - y = 3), (x, y); man, the sale of the SPLDY meropolous palmagass that I personante listers that variability pray soling technic Latihan Beard own | district l. Menuratusi apakoh. $\left\{ \frac{2\,x+y=4}{x+y=3} \right.$ marupakan contoh dari SPLIN/7 Jika Ya, berikan akoasanu serta tentukan HP dari persumum tersebut shole: bookers for table both some degree and dengan metode grafik! s.y resolved s.f keenen 2. Caribb ponyelemian dari personnan $\begin{pmatrix} 4p+3q+21\\ 3p-q+3 \end{pmatrix}$ dangan metode eliminasi Cook $\mathbb{E}\left(\begin{smallmatrix} g+3g+1k\\3g+1+4\end{smallmatrix}\right)$ 3. Confish penyelesanan dari persamaan ($\frac{x+S}{2x-y+1}$ dengan metode substitus! $1\left(\begin{smallmatrix}2x+3y+16\\6x+y+36\end{smallmatrix}\right)$ D. Menyelesaiakan SPLDV dan menggambar grafik menggunakan Wolfram Mathematica Latihan $= -\operatorname{Solve}\{(2\,x+y+12,\,x+y+1),\,(x,\,y)\}$ 1. Morantum spakeh $\left\{ \begin{array}{ll} 2x+5y=7\\ 4x+9y=13 \end{array} \right.$ merupakan contoh dari SPLDV* Jika Ya. $= + \left((y+I_{x}(y+1)) \right.$ berikan alasanını serta visoslinmikan prafik dari persanuan tersebat Concern gooden profit menggeralso Wolfren Mathematica! 2. Caribit penyeleusian duri persaman
s $\left\{ \begin{array}{l} 4\,p+3\,q=20 \\ 2\,p-q=3 \end{array} \right.$ dengan metode substitusi 3. Coribh penyelexainn dan personaan [$\frac{x+5}{2}\frac{y+13}{x-y+4}$ dengan metode eliminasi) Gambar 4 33 Peletakan latihan soal setelah Gambar 4 32 peletakan latihan soal kurang tepat metode penyelesaian SPLDV

Komentar	Sebelum Revisi	Hasil perbaikan
dan Saran		
Perbaikan		
Baiknya soal		Gambar 4 35 soal setelah revisi
yang digunakan soal non rutin	TES KEMAMPIAN BERPIKIR KRITIN MATEMATIS NAWA Jenjang / Mate Jelujanon	S. Perkarikan ikuwan didawak na: (Hant remodulo) d buku tahu dan 3 pansa) di wan "Pamina Moradia" in kawa paredayar Hg. 10 000 radak tahu tahu belanganyaya. Serialah digunahkan buku naba belanganyaya in beli melak kabu dan masuk pansabankan belan tahu dan adak manganyakan tagan. Dan bat bemankan Hant masukali panga 2 baku tahu dan pansab panganyakan tagan. Dan bat bemankan Hant masukali panga 2 baku tahu dan pansab panganyakan tagan. Dan bat bemankan Hant masukali panga 2 baku tahu dan dan pangan dan pangan mandali salimah baku dala dan belanda pangan dan pangan d
	Burgan ised owag your herts offinger Dever! Burging of the Committee of the Commit	brancher georgie Kateran provedione bendt di kuilkan Tote joga halter, don hant verbelak fistus manudorki bandt. Tote joga merchalit bendt di sistu yong orana delegate temper benn menchalit bandt. Hart merchali 2 kg mengen den 2 kg, appel di tedar bandt yong sistus (P. 2, 00,000). Abadi sigus prembelik i kg mengga den 2 kg, appel di tedar bank yong sistus dengan laden den York, bereput buryak sistu yong banto Andre buyurkan? (Yullisham behortment yong sata produ wolf film berjakan senara rimetal)
	Titik Setyawa	ati, S. Pd.
	-	
_		

4. Implementasi (Implementation)

Pada tahap *Implementation* dilakukan percobaan produk berupa emodul setelah produk diuji kelayakannya oleh validator ahli media dan ahli materi serta telah direvisi dengan komentar dan saran perbaikan dari validator yang menjadi acuannya. Penelitian dilaksanakan pada kelas VIII semester 2. Penggunaan media yang dikembangkan ini dilakukan untuk kelas, kelas membandingkan dua yaitu yang pembelajarannya menggunakan E-Modul berbantuan Wolfram Mathematica di kelas VIII F sebagai kelas eksperimen, dan kelas yang tidak menggunakan E-Modul berbantuan Wolfram Mathematica yaitu kelas VIII yang pembelajarannya secara konvensional sebagai kelas kontrol.

Uji coba produk dilaksanakan pada tanggal 31 Mei - 16 Juni 2022 untuk mengetahui sejauh mana keberhasilan produk yang dihasilkan terhadap kemampuan berpikir kritis siswa. Berikut merupakan analisis data setelah dilakukan penelitian

a. Analisis Data Hasil Uji Coba instrument

Uji coba instrumen soal dilaksanakan pada kelas VIII H dengan jumlah 29 siswa sebagai sampel uji coba. Hasil uji coba instrumen kemudian dianalisis untuk mengetahui validitas, reliabilitas, tingkat kesukaran, dan daya pembeda dari tiap butir instrument soal uji coba.

1) Validitas

Validitas digunakan untuk mengetahui valid atau tidaknya soal uji coba. Perhitungan dilakukan menggunakan Ms. Excel dan dilakukan secara manual dimana n = 29 dan taraf signifikan 5% diperoleh harga $r_{tabel}=0,367$, jika $r_{hitung}>r_{tabel}$ maka soal dinyatakan valid. Hasil analisis validitas soal uji coba dapat dilihat pada Tabel 4.8

Tabel 4 8 Hasil Analisis Validitas Soal Uji Coba

Nomor	Validitas		
Butir Soal	r_{xy}	Kriteria	
1	0,702	Valid	
2	0,804	Valid	
3	0,745	Valid	
4	0,785	Valid	

Berikut adalah contoh perhitungan manual validitas butir soal no 1

$$N = 29$$
 $\sum X = 169$ $\sum Y = 870$ $\sum XY = 5580$ $\sum X^2 = 1215$ $\sum Y^2 = 28216$

$$r_{xy} = \frac{N\sum XY - (\sum X)(\sum Y)}{\sqrt{\{N\sum X^2 - (\sum X)^2\}\{N\sum Y^2 - (\sum Y)^2\}}}$$

$$= \frac{(29 \times 5580) - (169)(870)}{\sqrt{\{(29 \times 1215) - (169)^2\}\{(29 \times 28216) - (870)^2\}}}$$

$$= 0.702$$

Dari perhitungan diatas diperoleh $r_{xy}=0.703\,$ sedangkan pada tabel nilai *product moment* dengan N=29 dan taraf signifikan 5% diperoleh $r_{tabel}=0.367.\,$ hal ini menunjukkan bahwa $r_{xy}>r_{tabel}\,$ yaitu 0,703 > 0.367 sehingga butir soal nomor 1 dikatakan **Valid**.

Berdasarkan Tabel 4.10 4 soal yang diuji cobakan semua soal dinyatakan valid. Untuk perhitungan validitas secara lengkap dapat dilihat pada Lampiran 15 (Ms Excel) dan Lampiran 16a (manual).

2) Reliabilitas

Soal uji coba dikatakan reliabel jika memenuhi syarat $r_{11} > r_{tabel}$. Dengan n = 29 dan taraf signifikan 5% . berdasarkan hasil perhitungan diperoleh jumlah varians butir soal $\sum \sigma_i^2 = 30,27824$ dan varians total $\sigma_t^2 = 68,207$. Didapat $r_{11} = 0,580$ setelah didapat r_{11} kemudian r_{11} dikonsultasikan dengan r_{11} .

Karena harga r_{tabel} tdan diperoleh hasil soal tes tersebut reliabel. Untuk perhitungan reliabilitas secara lengkap dapat dilihat pada Lampiran 15 (Ms Excel) dan Lampiran 16b (manual).

3) Taraf Kesukaran

Perhitungan taraf kesukaran dilakukan untuk mengetahui tingkat kesukaran soal butir soal uji coba. Hasil analisis taraf kesukaran butir soal dapat dilihat pada Tabel 4.9.

Tabel 49 Hasil Analisis Taraf Kesukaran Soal Uji Coba

No Butir	Taraf kesukaran		
Soal	Skor	Kriteria	
1	0,579	Sedang	
2	0,453	Sedang	
3	0,609	Sedang	
4	0,810	Mudah	

Berikut adalah contoh perhitungan manual menghitung taraf kesukaran butir soal no 1

$$Rata - rata = \frac{jumlah \ skor \ peserta \ didik \ tiap \ butir \ soal}{jumlah \ skor \ peserta \ didik}$$
$$= \frac{168}{29} = 5,793$$
$$Taraf \ kesukaran = \frac{Rata - rata}{Skor \ maksimum \ tiap \ soal} = \frac{5,793}{10} = 0,579$$

Dari perhitungan di atas diperoleh taraf kesukaran sebesar 0,583, berdasarkan kriteria taraf kesukaran butir soal no 1 tergolong dalam soal sedang.

Berdasarkan Tabel 4.9 dari 4 soal yang diuji cobakan diperoleh hasil perhitungan taraf kesukaran dengan kategori mudah (0,71-1,00) sebanyak 1 soal yaitu soal nomor 4. Dan soal dengan kategori sedang (0,31-0,70) sebanyak 3 soal yaitu soal nomor 1, 2 dan 3. Untuk perhitungan taraf kesukaran secara lengkap dapat dilihat pada Lampiran 15 (Ms Excel) dan Lampiran 16c (manual).

4) Daya Pembeda

Anaisis daya pembeda dilakukan untuk megetahui kemampuan soal dalam membedakan siswa yang berkemampuan tinggi dan siswa yang berkemampuan rendah. Hasil perhitungan daya pembeda dapat dilihat pada Tabel 4.10.

Tabel 4 10 Hasil Analisis Daya Pembeda Soal Uji Coba

No Butir	Daya Pembeda		
Soal	Skor	Kriteria	
1	0,31	Baik	
2	0,32	Baik	
3	0,32	Baik	
4	0,30	Baik	

Berikut adalah contoh perhitungan manual daya pembeda

butir soal no 1

 $\bar{X}KA$: 7,214

 $\bar{X}KB$:4,143

skor maks : 10

$$DP = \frac{\bar{X}KA - \bar{X}KB}{skor\ maks} = \frac{7,214 - 4,143}{10} = 0,31$$

Berdasarkan Tabel 4.10 dari 4 soal yang diuji cobakan semua soal termasuk ke dalam kategori Baik. Untuk perhitungan daya pembeda secara lengkap dapat dilihat pada Lampiran 15 (Ms Excel) dan Lampiran 16d (manual)

b. Kesimpulan Analisis Instrumen Soal

Berdasarkan pertimbangan hasil analisis validitas, reliabilitas, taraf kesukaran, dan daya pembeda. Dari 4 soal uraian yang diuji cobakan keempat soal tersebut memenuhi kriteria. Keempat soal tersebut adalah soal yang akan digunakan sebagai soal *post test* pada kegiatan ahir penelitian dari kelas eksperimen dan kelas kontrol.

c. Hasil Analisis dan Interpretasi Data

1) Analisis Data Awal

Analisis data awal digunakan untuk mengetahui apakah kelas eksperimen dan kelas kontrol memiliki kemampuan yang sama atau tidak. Kelas eksperimen terdiri dari 30 siswa dan kelas kontrol terdiri dari 28 siswa. Data yang digunakan untuk analisis awal adalah data hasil Penilaian Tengah Semester Genap kelas VIII-F dan VIII-G tahun pelajaran 2022/2023. Daftar nama peserta didik kelas kelas eksperimen dan kelas kontrol dapat dilihat pada lampiran. Dan daftar nilai awal peserta didik kelas eksperimen dan kelas kontrol dapat dilihat pada Lampiran. Pada analisis data awal ini akan dilakukan uji normalitas, homogenitas, dan uji t dua pihak.

a. Uji Normalitas

Uji normalitas digunakan untuk mengetahui apakah data dari sampel yang diambil berasal dari populasi yang berdistribusi normal atau tidak. Untuk mengetahui normalitas sampel dilakukan dengan menggunakan uji Lilliefors, dengan taaf signifikan 5%. Adapun kriteria dari uji normalitas adalah $L_0 < L_{tabel}$, maka sampel berasal dari populasi yang berdistribusi normal.

Tabel 4 11 Hasil Uji Normalitas Data Awal

Kelas	N	L_{hitung}	L_{tabel}	Kesimpulan
Eksperimen	30	0,146	0,161	Berdistribusi Normal
Kontrol	28	0,130	0,167	Berdistribusi Norma

Berdasarkan Tabel 4.11 diperoleh L_{hitung} pada kelas eksperimen sebesar 0,146. Untuk N=30 dan taraf signifikan 5% nilai kritik Lilliefors diperoleh harga $L_{tabel} = 0,161$. Hal ini berarti $L_0 \le L_{tabel}$ yaitu 0,146 \le 0,161. Sehingga dapat disimpulkan bahwa sampel berasal dari populasi yang berdistribusi normal. Perhitungan secara rinci dapat dilihat pada Lampiran 17a (Ms. Excel) dan Lampiran 17b (manual).

Berdasarkan Tabel 4.13 diperoleh L_{hitung} pada kelas kontrol sebesar 0,130. Untuk N=28 dan taraf signifikan 5% nilai kritik Lilliefors diperoleh harga $L_{tabel} = 0,167$. Hal ini berarti $L_0 \le L_{tabel}$ yaitu 0,130 $\le 0,167$. Sehingga dapat disimpulkan bahwa sampel berasal dari populasi yang berdistribusi normal. Perhitungan secara rinci dapat dilihat pada Lampiran 18a (Ms. Excel) dan Lampiran 18b (manual).

b. Uji Homogenitas

Uji homogenitas dilakukan untuk mengetahui apakah sampel mempunyai varians yang sama atau tidak. Uji homogenitas pada penelitian ini menggunakan uji Bartlett dengan taraf signifikan 5%. Kriteria dalam uji homogenitas apabila $b_{hitung} \geq b_{tabel}$ maka sampel memiliki varians yang sama. Hasil analisis uji homogenitas dapat dilihat pada Tabel 4.12.

Tabel 4 12 Hasil Analisis Uji Homogenitas Data Awal

Kelas	N	b_{hitung}	b_{tabel}	Kesimpulan
Eksperimen	30	0,955	0,933	Variansi Homogen
Kontrol	28	0,933	0,933	v arransi 110mogen

Berdasarkan Tabel 4.12 dengan taraf signifikan 5%, $n_1 = 30$, $n_2 = 28$, dan k = 2, diperoleh nilai $b_{tabel} = 0.933$ dan $b_{hitung} = 0.955$. Hal ini menunjukkan bahwa $b_{hitung} \ge b_{tabel}$ yaitu $0.955 \ge 0.933$ sehingga H_0 diterima. Maka dapat disimpulkan bahwa kelas eksperimen dan kelas kontrol memiliki variansi yang sama (Homogen). Perhitungan secara rinci dapat dilihat pada Lampiran 19a (Ms. Excel) dan Lampiran 179 (manual).

c. Uji t Dua Pihak

Uji t dua pihak dilakukan untuk mengetahui kesamaan ratarata hasil belajar kelas eksperimen dan kelas kontrol. Sebelum dialakukan penelitian harus dipastikan bahwa Kelas eksperimen

dan kelas memiliki kemampuan yang seimbang. Kriteria rerata hasil belajar kelas eksperimen dan kelas kontrol dengan taraf signifikan 5% apabila $-t_{tabel} \le t_{hitung} \le t_{tabel}$ hasil analisis uji t dua pihak dapat dilihat pada Tabel 4.13

Tabel 4 13 Hasil Analisis Uji t Dua Pihak

Kelas	N	t_{hitung}	t_{tabel}	Kesimpulan
Eksperimen	30			Rerata hasil belajar
Kontrol	28	-1,175	2,003	kelas eksperimen dan kelas kontrol sama

Tebel 4.13 menunjukkan bahwa $n_1 = 30$ dan $n_{30} = 28$ dengan taraf signifikan 5% diperoleh $t_{tabel} = 2,003$ dan $t_{hitung} = -1,175$. Hal ini menunjukkan bahwa t_{hitung} berada diantara $-t_{tabel}$ dan t_{tabel} yaitu $-2,003 \le -1,175 \le 2,003$ sehingga H_0 diterima. dapat disimpulkan bahwa rerata hasil belajar kelas eksperimen dan kelas kontrol sama (kemampuan kelas eksperimen dan kelas kontrol sama). Perhitungan uji t dua pihak secara rinci dengan menggunakan dapat dilihat pada Lampiran 20a (Ms. Excel) dan Lampiran 20b (manual).

2) Analisis Data Akhir

Setelah dilakukan uji coba instrument dan dilakukan analisis awal dan diperoleh hasil yang memenuhi syarat. Selanjutnya dilakukan pembelajaran menggunakan *e-modul* berbantuan *wolfram mathematica* pada kelas eksperimen. Pada kelas eksperimen dan kelas kontrol masing-masing dilakukan kegiatan pembelajaran selama 3 kali pertemuan dan dilaksakan *pre test* dan *post tes* sebelum dan sesudah kegiatan pembelajaran.

Setelah pelaksanaan pembelajaran selesai kemudian dilakukan *post test* untuk mengetahui apakah pembelajaran menggunakan *e-modul* berbantuan *wolfram mathematica* lebih baik daripada pembelajaran konvensional yang dilakukan pada kelas Kontrol. Daftar nilai *post test* siswa kelas eksperimen dan kelas

kontrol dapat dilihat pada lampiran 27a (Kelas Eksperimen) dan 28a (Kelas Kontrol). Adapun langkah-langkah yang digunakan dalam analisis data akhir sebagai berikut:

a. Uji Normalitas

Pada penelitian ini uji normalitas digunakan untuk mengetahui apakah data dari sampel yang diambil berasal dari populasi yang berdistribusi normal atau tidak. Untuk mengetahui normalitas sampel dilakukan dengan menggunakan uji Lilliefors, dengan taraf signifikan 5%. Adapun kriteria dari uji normalitas adalah $L_0 < L_{tabel}$, maka sampel berasal dari populasi yang berdistribusi normal.

Tabel 4 14 Uji Normalitas Data Akhir

Kelas	N	L_{hitung}	L_{tabel}	Kesimpulan
Eksperimen	30	0,153	0,161	Berdistribusi Normal
Kontrol	28	0,132	0,167	Berdistribusi Normal

Berdasarkan Tabel 4.14 diperoleh L_{hitung} pada kelas eksperimen sebesar 0,153. Untuk N = 30 dan taraf signifikan 5% nilai kritik Lilliefors diperoleh harga L_{tabel} = 0,161. Hal ini berarti $L_{hitung} \leq L_{tabel}$ yaitu 0,153 \leq 0,161. Sehingga dapat disimpulkan bahwa sampel berasal dari populasi yang berdistribusi normal. Perhitungan secara rinci dapat dilihat pada Lampiran 29a (Ms. Excel) dan Lampiran 29b (manual). Berdasarkan Tabel 4.14 diperoleh L_{hitung} pada kelas kontrol sebesar 0,132 untuk N = 28 dan taraf signifikan 5% nilai kritik Lilliefors diperoleh harga L_{tabel} = 0,167. Hal ini berarti $L_{hitung} \leq L_{tabel}$ yaitu 0,132 < 0,167. Sehingga dapat disimpulkan bahwa sampel berasal dari populasi yang berdistribusi normal. Perhitungan secara rinci dapat dilihat pada Lampiran 30a (Ms. Excel) dan Lampiran 30b (manual).

b. Uji Homogenitas

Pada penelitian ini uji homogenitas dilakukan untuk mengetahui apakah sampel mempunyai varians yang sama atau tidak. Uji homogenitas pada penelitian ini menggunakan uji Bartlett dengan taraf signifikan 5%. Kriteria dalam uji homogenitas apabila $b_{hitung} \geq b_{tabel}$ maka sampel memiliki varians yang sama. Hasil analisis uji homogenitas dapat dilihat pada Tabel 4.15.

Tabel 4 15 Uji Homogenitas Data Akhir

Kelas	N	b_{hitung}	b_{tabel}	Kesimpulan
Eksperimen	30	0,989	0,933	Variansi Homogen
Kontrol	28	,	,	varialisi Holllogeli

Berdasarkan Tabel 4.15 dengan taraf signifikan 5%, $n_1 = 30$, $n_2 = 28$, dan k = 2, diperoleh nilai $b_{tabel} = 0.933$ dan $b_{hitung} = 0.989$. Hal ini menunjukkan bahwa $b_{hitung} \ge b_{tabel}$ yaitu $0.989 \ge 0.933$ sehingga H_0 diterima. Maka dapat disimpulkan bahwa kelas eksperimen dan kelas kontrol memiliki variansi yang sama (Homogen). Perhitungan secara rinci dapat dilihat pada Lampiran 31a (Ms. Excel) dan Lampiran 31b (manual).

c. Uji Ketuntasan belajar Klasikal

Uji ketuntasan belajar klasikal dilakukan untuk mengetahui nilai hasil belajar siswa dapat mencapai ketuntasan secara klasikal. Menurut Bungsu dan Vilardi (dalam Utami & Maskai, 2020) Suatu kelas dikatakan mencapai ketuntasan belajar klasikal jika sekurang kurangnya terdapat 80% siswa tuntas belajar. Hasil perhitungan persentase ketuntasan belajar klasikal kelas eksperimen sebesar 97% dan pada kelas kontrol sebesar 93%. Sebagai penguatan ketutansan belajar klasikal juga dapat dicari dengan uji t pihak kiri. Adapun hasil uji t pihak kiri dapat dilihat pada Tabel 4.16.

Tabel 4 16 Hasil Analisis Uji t Pihak Kiri

Kelas	N	t_{hitung}	t_{tabel}	Kesimpulan
Eksperimen	30	9,308	1,697	Proporsi ketuntasan belajar siswa tercapai
Kontrol	28	7,115	1,701	Proporsi ketuntasan belajar siswa tercapai

Bedasarkan Tabel 4.16 uji t untuk kelas eksperimen dengan n = 30 dan taraf signifikan 0,05 diperoleh $t_{hitung} = 9,308 \,\mathrm{dan}$ $t_{tabel} = 1,697$, hal ini menunjukkan bahwa $t_{hitung} \ge t_{tabel}$ yaitu 9,308 \ge 1,697 maka diterima. Perhitungan secara rinci dapat dilihat pada Lampiran 32a (Ms. Excel) dan Lampiran 32b (manual). Dan uji t pada kelas kontrol dengan n = 28 dan taraf signifikan 0,05 diperoleh $t_{hitung} = 7,115 \, \mathrm{dan} \quad t_{tabel} = 1,701, \quad \mathrm{hal} \quad \mathrm{ini} \quad \mathrm{menunjukkan}$ $t_{hitung} \ge t_{tabel}$ yaitu 7,115 \ge 1,701 maka bahwa diterima. Perhitungan secara rinci dapat dilihat pada Lampiran 33a (Ms. Excel) dan Lampiran 33b (manual). Berdasarkan perhitungan tersebut dapat disimpulkan bahwa proporsi ketuntasan belajar siswa kelas eksperimen dan kelas kontrol tercapai.

d. Uji t Satu Pihak Kanan

Uji t satu pihak kanan dilakukan untuk mengetahui apakah rerata hasil belajar kelas eksperimen lebih baik dari kelas kontrol. Uji t satu pihak kanan juga digunakan untuk mengetahui salah satu indikator keefektifan produk media pembelajaran. Kriteria uji t satu pihak kanan adalah $t_{hitung} > t_{tabel}$. Hasil analisis uji t satu pihak kanan dapat dilihat pada Tabel 4.17.

Tabel 4 17 Hasil Analisis Uji t Satu Pihak Kanan

Kelas N t _{hitung}	t_{tabel}	Kesimpulan
-----------------------------	-------------	------------

Eksperimen	30	2,193	1.673	Rerata hasil belajar kelas eksperimen
Kontrol	28			lebih baik daripada kelas kontrol.

Tebel 4.17 menunjukkan bahwa $n_1 = 30$ dan $n_{30} = 28$ dengan taraf signifikan 5% diperoleh $t_{tabel} = 1,673$ dan $t_{hitung} = 2,193$. Hal ini menunjukkan bahwa t_{hitung} lebih besar daripada t_{tabel} yaitu 2,205 > 1,673 sehingga H_0 ditolak. Jadi dapat disimpulkan bahwa rerata hasil belajar kelas eksperimen lebih baik daripada kelas kontrol. Perhitungan uji t satu pihak kanan secara rinci dapat dilihat pada Lampiran 34a (Ms. Excel) dan Lampiran 34b (manual).

e. Uji N-Gain

Uji N-Gain dilakukan untuk mengetahui peningkatan kemampuan berpikir kritis siswa yang diperoleh dari hasil *pre test* dan *post test*. Uji N-Gain juga digunakan untuk mengetahui salah satu indikator keefektivan *e-modul* berbatuan *wolfram mathematica*. Hasil analisis uji N-Gain dapat dilihat pada Tabel 4.18

Tabel 4 18 Hasil Analisis Uji N-Gain

No	Kelas	N-Gain	Kategori	Keterangan
1.	Eksperimen	0,65	sedang	Cukup Efektif
2.	Kontrol	0,29	rendah	Tidak Efektif

Tebel 4.18 menunjukkan bahwa hasil uji N-Gain kelas eksperimen lebih baik daripada kelas kontrol yaitu hasil uji N-Gain kelas eksperimen adalah 0,65 dalam kategori sedang, dan hasil uji N-Gain pada kelas kontrol adalah 0,29 dalam kategori rendah. Perhitungan N-Gain secara rinci dapat dilihat pada Lampiran 35a (Ms. Excel) dan Lampiran 35b (manual).

5. Evaluasi (Evaluation)

Pengembangan media yang telah dikembangkan oleh peneliti berupa *e-modul* berbantuan *wolfram mathematica* yang telah di validasi oleh validator ahli media dan ahli materi dan memperoleh hasil yang layak kemudian *e-modul* berbantuan *wolfram mathematica* diujicobakan di lapangan. Media diujicobakan pada siswa kelas VIII F yang berjumlah 30 siswa. uji coba media dilakukan dengan 3 kali pertemuan dan diakhiri dengan mengerjakan soal *post test*. Setelah selesai pembelajaran dan telah melakukan *post test* siswa diminta untuk mengisi angket penilaian media pembelajaran oleh siswa. Hasil analisis angket penilaian media pembelajaran oleh siswa menunjukan persentase sebesar 92%. Dari hasil tersebut menunjukkan bahwa *e-modul* berbantuan *wolfram mathematica* layak digunakan oleh siswa dan dalam kategori sangat baik. Sehingga media pembelajaran layak digunakan dalam pembelajaran. Perhitungan secara rinci dapat dilihat pada Lampiran 36b.

B. Pembahasan

Penelitian yang dilaksanakan merupakan jenis penelitian *research and development* (R&D) dengan model ADDIE. ADDIE merupakan model pengembangan suatu produk yang yang berisi realisasi rancangan produk (Cahyadi, 2019). Produk yang dikembangkan dalam penelitian ini adalah *e-modul* berbantuan *wolfram mathematica* Model ADDIE terdiri dari 5 tahap yaitu:

Tahap pertama analisis (*analysis*), pada tahap ini peneliti melakukan observasi lapangan dengan melakukan wawancara dengan guru matematika disekolah yang dituju mengenai pembelajaran di sekolah tersebut. Dari hasil observasi awal diperoleh informasi bahwa sekolah tersebut sudah menggunakan kurikulum 2013 namun dalam proses pembelajaran hanya menggunakan buku teks dan rangkuman materi yang diberikan oleh guru. Sumber belajar tersebut kurang menarik minat siswa dalam belajar dan siswa hanya mendengarkan penjelasan dari guru saja sehingga siswa kurang dalam keterampilan berpikir kritis. Dari uraian tersebut diperlukannya sumber belajar yang bervariasi dan menarik yang dapat meningkatkan kemampuan berpikir kritis terhadap materi yang diajarkan sehingga dapat mempermudah siswa

dalam memahami materi dan dapat meningkatkan kemampuan berpikir kritis siswa.

Anggraini Rochmadi (2021)& menyatakan bahwa media pembelajaran dapat memberikan rangsangan terhadap kemampuan bepikir kritis dalam pelaksanaan pembelajaran dikelas. Dengan menggunakan media pembelajaran yang tepat dapat membantu siswa dalam memahami materi pembelajaran dengan baik dan membantu siswa untuk berpikir kritis serta menimbulkan semangat dalam belajar (Pratiwi, 2021). Berdasarkan hasil penelitian Nooruwaida (2022) e-modul valid dan layak digunakan dalam pembelajaran IPA dan efektif dalam meningkatkan kemampuan berpikir kritis siswa. Dari analisis kebutuhan siswa tersebut peneliti mengembangkan sebuah modul eletronik (e-modul) berbantuan wolfram mathematica untuk digunakan pada siswa kelas VIII. Dengan penggunaan media pembelajaran diharapkan dapat menciptakan pembelajaran yang menarik, menyenangkan, memudahkan siswa untuk memahai materi serta dapat meningatkan kemampuan berpikir kritis siswa.

Tahap kedua adalah tahap perancangan (design), pada tahap ini peneliti melakukan perancangan media pembelajaran seperti mempersiapakan materi sampai latihan soal yang akan dimasukkan ke dalam e-modul. Materi terlebih dahulu disusun dengan bantuan software wolfrane mathematica, kemudan di upload ke google drive, selanjutnya mengumpulkan icon yang akan digunakan dalam media serta merancang desain tampilan awal media pembelajaran. Selain itu pada tahap ini peneliti juga merancang perangkat pembelajaran yang akan digunakan dalam penelitian, perangkat pembelajaran yang disiapkan adalah silabus yang mengacu pada K-13, RPP, kisi-kisi soal uji coba, soal uji coba, dan kunci jawaban soal uji coba. Dalam penyusunan e-modul banyak menggunakan gambar, video, dan icon menarik yang sesuai dengan Theory-Grounded Practice yang disampaikan Mayer (2009:59) bahwa prinsip desain pembelajaran multimedia harus didasarkan pada pemahamna tentang bagaimana orang belajar melalui gambar dan kata-kata.

Tahap ketiga adalah tahap pengembangan (development). Setelah dilakukan perancangan pada tahap kedua kemudian dilanjutkan pengembangan pada tahap ini dilakukan pembuatan produk media pembelajarann. Setelah selesai melakukan pembuatan produk, kemudian produk akan divalidasi oleh ahli media dan ahli materi. Menurut Sugiyono (2008:302) untuk mengetahui kelemahan dan kelebihan suatu produk dapat dilakukan dengan menghadirkan beberapa pakar atau tenaga ahli yang sudah berpengalaman untuk menilai produk baru yang dirancang. Ahli yang dihadirkan dalam validasi produk ini adalah ahli media dan ahli materi yang berasal dari dosen Universitas PGRI semarang dan Guru Matematika SMP Negeri 2 Weleri. Dari hasil penilaian validator peneliti dapat mengetahui kekurangan produk yang nantinya akan diperbaiki oleh peneliti sebelum diujicobakan. Suatu instrumen dikatakan memiliki validitas yang tinggi apabila dapat menjalankan fungsi ukurnya dengan baik atau memberikan hasil yang ukur yang sesuai dengan tujuan dilakukannya pengukuran tersebut (Arikunto, 2006). Hal ini sesuai dengan yang disampaikan Eriyanto (2011) bahwa alat ukur dikatakan valid jika bisa mengukur dengan tepat apa yang ingin diukur. Pada penelitian ini peneliti menggunakan validitas isi untuk menguji kevalidan produk yang dibuat. Menurut Arikunto (2006) validitas isi merupakan validitas dengan penentuan proporsi yang didasarkan pendapat (judgement) para ahli dalam bidang bersangkutan. Sehingga pada penelitian ini produk dapat dikatakan valid berdasarkan penilaian validator yang berkompeten. Berdasarkan penilaian ahli materi dan ahli media diperoleh persentase yang kemudian diinterpretasikan ke dalam kriteria dan media yang dikembangkan terdapat dalam kategori "Sangat Baik"

Tahap ke kempat adalah tahap implementasi (*implementation*), pada tahap ini peneliti melakukan implementasi media pembelajaran yang berupa *e*-modul yang telah divalidasi dan direvisi pada kegiatan pembelajaran kelas eksperimen. Sebelum dilakukan pembelajaran peneliti melakukan uji coba soal terlebih dahulu di kelas uji coba untuk menguji soal tes yang akan digunakan. Berdasarkan hasil analisis uji coba soal uji coba diperoleh 4 soal uraian yang di uji coba kan adalah soal yang valid dan reliabel. Berdasarkan uji validitas, uji reliabilitas, tingkat kesukaran, dan daya pembeda 4 soal uji coba tersebut layak untuk diujikan.

Setelah soal dinyatakan layak, selanjutnya mengimplementasikan media pada kelas eksperimen. Sebelum mengimplementasikan media pada kelas eksperimen dilakukan analisis awal untuk mengetahui apakah kelas eksperimen dan kelas kontrol memiliki kemampuan yang sama. Data yang digunakan dalam analisis awal adalah data nilai penilaian tengah semester 2. Data tersebut kemudian dianalisis menggunakan uji normalitas, uji homogenitas, dan uji t dua pihak dan diperoleh hasil rata-rata kelas eksperimen dan kelas kontrol sama. Sehingga dapat disimpulkan bahwa kelas eksperimen dan kelas kontrol memiliki kemampuan yang sama.

Setelah analisis data awal menunjukan hasil rata-rata kedua sama, dilakukan *pre test* yang dilanjutkan dengan pembelajaran menggunakan *e-modul* sebanyak 3 kali pertemuan pada kelas eksperimen dan pembelajaran 3 kali pertemuan dengan metode konvensional pada kelas kontrol sebelum dilaksanakan *pre test* dan *post* test pada kelas eksperimen dan kelas kontrol.

Pada pertemuan ke-4 diberikan soal tes kemampuan berpikir kritis dengan materi Sistem Persamaan Linear Dua Variabel dengan soal yang digunakan berdasarkan indikator berpikir kritis yang disampaikan Rahayu & Alyani (2020). Hal ini lakukan untuk mengetahui apakah terdapat peningkatan kemampuan berpikir kritis pada kelas eksperimen dan kelas kontrol, juga untuk mengetahui apakah hasil belajar pada kelas eksperimen lebih baik dari hasil belajar kelas kontrol. Data yang diperoleh dari *post test* dilapangan kemudian dianalisis menggunakan uji normalitas, homogenitas, uji ketuntasan belajar klasikal, uji t satu pihak kanan, dan uji N-Gain. Dari uji normalitas dan homogenitas kedua kelas diperoleh hasil bahwa kelas eksperimen dan kelas kontrol normal dan homogen.

Menurut Lintang et al., (2017) mengatakan bahwa perangkat pembelajaran dikatakan efektif jika ketuntasan hasil tes kemampuan berpikir kritis ≥ 75%, hasil tes kemampuan berpikir kritis kelas eksperimen lebih baik daripada kelas kontrol, dan terjadi peningkatan pada kemampuan berpikir kritis peserta didik yang menggunakan perangkat pembelajaran tersebut. Hal tersebut dapat diketahui dari uji ketuntasan belajar klasikal, uji t satu pihak

kanan, dan uji N-Gain untuk melihat keefektifan media. Dari hasil analisis akhir diperoleh hasil bahwa ketuntasan belajar klasikal pada kelas eksperimen diperoleh 97% dan pada kelas kontrol 93%, uji ketuntasan belajar klasikal juga dikuatkan dengan uji t pihak kiri dan diperoleh hasil pada kelas eksperimen dan kelas kontrol H_0 diterima sehingga pada kelas eksperimen dan kelas kontrol proporsi ketuntasan hasil belajar siswa tercapai. Hasil analisis efektivitas dengan uji t satu pihak kanan diperoleh hasil t_{hitung} lebih besar daripada t_{tabel} yaitu 2,205 > 1,673 sehingga H_0 ditolak, jadi dapat disimpulkan bahwa hasil belajar kelas ekperimen lebih baik daripada kelas kontrol. Hasil analisis efektivitas dengan uji N-Gain diperoleh hasi uji N-Gain kelas eksperimen > Kelas kontrol. Kelas eksperimen memperoleh nilai N-Gain dalam kategori "Sedang" dan kelas kontrol memperoleh nilai N-Gain dalam kategori "Rendah". Dari hasil uji KBK, uji t satu pihak kanan, dan uji N-Gain dapat dikatakan media pembelajaran e-modul berbantuan wolfram telah memenuhi indikator menurut Lintang et al., (2017) mathematica sehingga e-modul berbantuan wolfram mathematica dapat dikatakan efektif. Menurut Evawani (dalam Puspita et al., 2017) keefektifan media pembelajaran dapat dilihat apabila terdapat peningkatan penguasaan konsep. Hal ini dapat ditunjukan dengan nilai n gain yang diperoleh.

Tahap kelima adalah tahap evaluasi (evaluation), pada tahap ini setelah pembelajaran selesai dan dilakukan pre test dan post test kemudian siswa diberikan angket penilaian e-modul berbantuan wolfram mathematica yang digunakan pada saat pembelajaran. Setelah itu angket penilaian media dianalisis dan diperoleh hasil bahwa e-modul berbantuan wolfram mathematica berada dalam kategori "Sangat Baik". Setelah melewati tahapan penelitian & pengembangan media pembelajaran, maka e-modul berbantuan wolfram mathematica untuk meningkatkan kemampuan berpikir kritis siswa memenuhi aspek valid dan efektif untuk digunakan dalam pembelajaran.hal ini sejalan dengan penelitian Hidayatulloh (2016) yang mengatakan bahwa e-modul layak (valid) digunakan dalam kegiatan pembelajaran. Ricu Sidiq & Najuah (2020) juga mengatakan bahwa e-modul memenuhi kriteria layak dan

baik digunakan dalam proses kegiatan pembelajaran mata kuliah strategi belajar mengajar. Menurut Suarsana & Mahayukti (2013) *E-modul* sangat baik dipakai untuk meningkatkan keikutsertaan peserta didik selama pembelajaran. Dalam proses pembelajaran peneliti melihat siswa begitu antusias dan semangat dalam pengguanaan *e-modul* berbantuan *wolfram mathematica*.

Berdasarkan pembahasan diatas, pengembangan *e-modul* berbantuan wolfram mathematica pada materi Sistem Persamaan Linear Dua Variabel layak digunakan dalam kegiatan pembelajaran menurut ahli media, ahli materi, dan dari angket respon siswa. Ditinjau dari hasil belajar siswa *e-modul* berbantuan wolfram mathematica juga efektif dalam meningkatkan kemampuan berpikir kritis siswa. Hal ini ditunjukkan bahwa hasil belajar pembelajaran menggunakan *e-modul* berbantuan wolfram mathematica lebih baik daripada hasil belajar pada kelas konvensional.

C. Keterbatasan Penelitian

Dalam proses penelitian terdapat beberapa keterbatasan yang dialami peneliti untuk lebih diperhatikan oleh peneliti selanjutnya dalam menyempurnakan penelitiannya. Adapun keterbatasan dalam penelitian ini yaitu dalam tahap *Implementation* langsung melakukan ujicoba produk pada kelas eksperimen dan tidak melalui ujicoba terbatas.

BAB V KESIMPULAN DAN SARAN

A. Kesimpulan

Berdasarkan analisis data dan pembahasan maka dapat disimpulkan bahwa:

1. E-Modul berbantuan wolfram mathematica untuk meningkatkan kemamapuan berpikir kritis dikembangkan menggunakan metode pengembangan ADDIE (Analysis, Design, Development, Implementation, Evaluation). Pada tahap analysis, peneliti melakukan observasi lapangan. Pada tahap analysis didapatkan bahwa siswa membutuhkan media pembelajaran yang menarik untuk dapat meningkatkan kemampuan berpikir kritis. Untuk itu peneliti melakukan pengembangan e-modul dengan tujuan dapat meningkatkan kemampuan berpikir kritis siswa. Setelah dilakukan observasi kemudian dilanjutkan ke tahap design, pada tahap ini peneliti mempersiapkan apa yang dibutuhkan untuk pembuatan produk, peneliti menyiapkan materi yang disusun berbantuan wolfram mathematica, menyiapkan video penjelasan dan latihan soal yang akan dimasukan ke dalam media. Setelah semua yang dibutuhkan sudah siap kemudian peneliti mulai menyusun *e-modul* dengan menggunakan canva. Selain itu, peneliti juga menyiapkan perangkat pembelajaran yang akan digunakan pada saat uji coba. Sebelum media digunakan, pada tahap development media tersebut akan divalidasi terlebih dahulu oleh validator yang terdiri dari dua ahli media dan dua ahli materi untuk mengetahui kelebihan dan kelemahan serta peneliti dapat memperbaiki media dengan berpedoman hasil analisis validasi. Setelah itu, dilanjutkan dengan tahap implementation, pada tahap implementation dilakukan uji coba lapangan pembelajaran menggunakan *e-modul* berbantuan *wolfram* mathematica pada kelas eksperimen serta dilakukan pre test dan post test pada kelas eksperimen dan kelas kontrol untuk melihat peningkatan kemampuan berpikir kritis siswa siswa. Tahap terakhir yaitu evaluation.

Pada tahap *evaluation* peneliti memberikan angket penilaian media oleh siswa pada kelas eksperimen untuk mengetahui apakah *e-modul* berbantuan *wolfram mathematica* layak untuk digunakan dalam kegiatan pembelajaran. Hasil angket penilaian media oleh siswa kemudian dianalisis dan memperoleh persentase keseluruhan 86% pada kategori "Sangat Baik". Setelah serangkaian kegiatan penelitian dengan menggunakan metode ADDIE dilakukan peneliti dapat menyimpulkan bahwa *e-modul* berbantuan *wolfram mathematica* layak/valid digunakan untuk meningkatkan kemampuan berpikir kritis siswa berdasarkan hasil validasi ahli media, ahli materi, dan penilaian media oleh siswa.

2. E-modul berbantuan wolfram mathematica efektif digunakan untuk meningkatkan kemampuan berpikir kritis siswa. Hal ini dibuktikan dengan hasil uji coba lapangan pada kelas eksperimen yang menyatakan bahwa e-modul berbantuan wolfram mathematica telah memenuhi indikator keefektifan yaitu proporsi ketuntasan ketuntasan belajar siswa tercapai, hasil belajar siswa kelas eksperimen lebih baik daripada kelas kontrol, dan terjadinya peningkatan kemampuan berpikir kritis siswa pada kelas eksperimen dilihat dari hasil analisis N-Gain dalam kategori "sedang".

B. Saran

Berdasarkan hasil penelitian yang dilakukan pada siswa kelas VIII SMP Negeri 2 Weleri, maka peneliti memberikan beberapa saran sebagai bahan pertimbangan dalam proses pembelajaran, sebagai berikut:

- 1. *E-modul* berbantuan *wolfram mathematica* yang dapat diakses menggunakan link pada *smartphone* peserta didik sebaiknya digunakan oleh guru dalam pembelajaran matematika pada materi SPLDV karena sudah terbukti berdasarkan hasil penelitian yang diperoleh.
- E-modul berbantuan wolfram mathematica perlu adanya pengembangan dan penelitian lebih lanjut. Misalnya dengan membuat dalam versi aplikasi sehingga siswa tidak membutuhkan akses internet saat akan membuka emodul.

DAFTAR PUSTAKA

- Abdillah, A. (2017). Efektivitas Media Pembelajaran dan Minat Belajar Pengaruhnya Terhadap Hasil Belajar Akuntansi Dengan Motivasi Belajar Sebagai Variabel Intervening Pada Siswa Kelas XI SMK Negeri dan Swasta di Jakarta Timur. *JUrnal Pendidikan Ekonomi*, 1, 61–64.
- Aini, N., Ansori, H., & Budiarti, I. (2022). PENGEMBANGAN MODUL SISTEM PERSAMAAN LINEAR DUA VARIABEL BERBASIS HIGHER ORDER THINKING SKILL UNTUK PEMBELAJARAN MATEMATIKA TINGKAT SMP. 2(1), 65–74.
- Anggraini, L. A., & Rochmadi, N. W. (2021). Meningkatkan Kemampuan Berpikir Kritis Siswa Kelas VIII Melalui Media Ular Tangga Kewarganegaraan pada Mata Pelajaran PPKn. *Jurnal Ilmiah Pendidikan Pncasila Dan Kewarganegaraan*, 6, 2.
- Ardiyanto, D. (2022). *Pengembangan media e-comic pembelajaran pai untuk siswa smp n 3 jatiagung*. UIN Rdaen Intan Lampung.
- Arikunto, S. (2006). *Pengukuran Dlm Bid Pendidikan*. 131. https://books.google.co.id/books?id=3SuBDp8bo7gC
- Arikunto, S. (2010). *Prosedur Penelitian Suatu Pendekatan Praktik* (Revisi). PT. RINEKA CIPTA.
- Branch, R. M. (2009). *Instructional Design: The ADDIE Approach Robert Maribe Branch Google Buku*. Department of Educational Psychology and Instructional Technology. https://books.google.co.id/books?hl=id&lr=&id=mHSwJPE099EC&oi=fnd&pg=PR3&dq=Branch,+R.+(2010).+Instructional+Design:+The+ADDIE+Approach.+Boston,+MA:+Springer+US.+&ots=Jp_pxEBU-1&sig=m8Dz76rg8H_JPYFBdDAsIYzOcB0&redir_esc=y#v=onepage&q&f=false
- Budiyono. (2016). Statistika Untuk Penelitian. UNS Press.
- Cahyadi, R. A. hari. (2019). Pengembangan Bahan Ajar Berbasis Addie Model. *HALAQA*: *ISLAMIC EDUCATION JOURNAL*, 3(1). https://halaqa.umsida.ac.id/index.php/halaqa/article/view/1563/1737
- Dewi, P. K., & Budiana, N. (2018). *Media Pembelajaran Bahasa: Aplikasi Teori Belajar dan Strategi Pengoptimalan Pembelajaran*. Universitas Brawijaya Press. https://books.google.co.id/books?id=ONqFDwAAQBAJ
- Dores, O. J., Wibowo, D. C., & Susanti, S. (2020). *Analisis kemampuan berpikir kritis siswa pada mata pelajaran matematika*. 242–254.
- Endrawati, P., & Aini, I. N. (2022). Deskripsi kemampuan berpikir kritis matematis dalam pembelajaran relasi dan fungsi di smp. 15.
- Eriyanto. (2011). Analisis isi pengantar metodologi untuk penelitian ilmu

- komunikasi dan ilmu-ilmu sosial lainnya. 510.
- Facione, P. (1994). *Using the Holistic Critical Thinking Scoring Rubric*. California Academia Press.
- Facione, P. a. (2011). Critical Thinking: What It Is and Why It Counts. In *Insight assessment* (Issue ISBN 13: 978-1-891557-07-1.). https://www.insightassessment.com/CT-Resources/Teaching-For-and-About-Critical-Thinking/Critical-Thinking-What-It-Is-and-Why-It-Counts/Critical-Thinking-What-It-Is-and-Why-It-Counts-PDF
- Farisyi, S. Al. (2018). PENGEMBANGAN MODUL ELEKTRONIK
 BERPENDEKATAN CONTEXTUAL TEACHING LEARNING PADA
 POKOK BAHASAN ALJABAR UNTUK SISWA MTs Skripsi. In
 Analytical Biochemistry (Vol. 11, Issue 1).
 http://link.springer.com/10.1007/978-3-319-593791%0Ahttp://dx.doi.org/10.1016/B978-0-12-420070-8.000027%0Ahttp://dx.doi.org/10.1016/j.ab.2015.03.024%0Ahttps://doi.org/10.1080/07352689.2018.1441103%0Ahttp://www.chile.bmwmotorrad.cl/sync/showroom/lam/es/
- Fatirul, A. N., & Walujo, D. A. (2021). *METODE PENELITIAN PENGEMBANGAN BIDANG PEMBELAJARAN (Edisi Khusus Mahasiswa Pendidikan dan Pendidik)*.

 https://www.google.co.id/books/edition/METODE_PENELITIAN_PENGE
 MBANGAN_BIDANG_PE/II1pEAAAQBAJ?hl=id&gbpv=1&dq=penelitia
 n+pengembangan&pg=PA7&printsec=frontcover
- Fatmawati, I., Darmono, P. B., & Purwoko, R. Y. (2020). Analisis Kemampuan Berpikir Kritis Dalam Pemecahan Masalah Matematika. *EKSAKTA: Jurnal Penelitian Dan Pembelajaran MIPA*, *5*(2), 196. https://doi.org/10.31604/eksakta.v5i2.196-201
- Fausih, M., & Danang, T. (2015). Pengembangan Media E-Modul Mata Pelajaran Produktif Pokok Bahasan "Instalasi Jaringan LAN (Local Area Network)" Untuk Siswa Kelas XI Jurusan Teknik Komputer Jaringan di SMK Nengeri 1 Labang Bangkalan Madura. *Jurnal UNESA*, 01(01), 1–9. https://jurnalmahasiswa.unesa.ac.id/index.php/jmtp/article/view/10375
- Feriyanti, N. (2019). Pengembangan E-Modul Matematika Untuk Siswa SD (The Development of E-Modul Mathematics For Primary Students). *Teknologi Pendidikan Dan Pembelajaran*, 1–12.
- Gunawan, R. (2022). MODUL PELATIHAN PENGEMBANGAN BAHAN AJAR /MODUL PEMBELAJARAN Google Books.
 https://www.google.co.id/books/edition/MODUL_PELATIHAN_PENGEM BANGAN_BAHAN_AJAR/F2JIEAAAQBAJ?hl=id&gbpv=1&dq=modul+a dalah&pg=PA5&printsec=frontcover
- Hidayat, A. A. (2021). Menyusun Instrumen Penelitian & Uji Validitas-

- Reliabilitas Google Books (1st ed.). Health Books Publishing. https://www.google.co.id/books/edition/Menyusun_Instrumen_Penelitian_Uj i_Validi/0dAeEAAAQBAJ?hl=id&gbpv=1&dq=validitas&printsec=frontcov er
- Hidayatulloh, M. S. (2016). Pengembangan E- Modul Matematika Berbasis Problem Based Learning Berbantuan Geogebra. *Pendidikan Matematika FPMIPA Universitas PGRI Semarang*, 1(2), 24–31.
- Jannah, M., & Budiman, I. (2022). *Analisis kemampuan berpikir kritis matematis siswa dalam menyelesaikan soal cerita pada materi lingkaran*. 5(1), 237–246. https://doi.org/10.22460/jpmi.v5i1.237-246
- Johnson, elaine B. (2002). *Contextual Teaching&learning Google Books*. PENERBIT MLC. https://www.google.co.id/books/edition/Contextual_Teaching_learning/PT4S 8C7gGFcC?hl=id&gbpv=1&dq=definisi+berpikir+kritis&pg=PA187&prints ec=frontcover
- Jupri, A. (2018). Peran Teknologi dalam Pembelajaran Matematika Dengan Pendekatan Matematika Realistik. *Seminar Nasional Matematika Dan Pendidikan Matematika*, 303–314. http://ejournal.radenintan.ac.id/index.php/pspm/article/view/2630
- Kustandi, C., & Dermawan, D. (2020). Media Pembelajaran. 306.
- Lintang, A. C., Masrukan, & Sri, W. (2017). *PBL dengan APM untuk* meningkatkan Kemampuan Pemecahan Maalah dan Sikap Percaya Diri. 6(1), 27–34.
- Lintang, A. C., & Wardani, S. (2017). PBL dengan APM untuk Meningkatkan Kemampuan Pemecahan Masalah dan Sikap Percaya Diri. *Journal of Primary Education*, 6(1), 27–34. https://doi.org/10.15294/jpe.v6i1.14510
- Maryam, Masykur, R., & Andriani, S. (2019). Pengembangan e-modul matematika berbasis Open Ended pada materi sistem persamaan linear dua variabel kelas VIII. *AKSIOMA : Jurnal Matematika Dan Pendidikan Matematika*, *10*(1), 1–12. https://doi.org/10.26877/aks.v10i1.3059
- Maydiantoro, A. (2019). Model-Model Penelitian Pengembangan (Research and Development). 10.
- Mayer, R. E. (2009). Multimedia Learning Second Edition. In *Syria Studies* (2nd ed., Vol. 7, Issue 1). Combridge University Press. https://www.researchgate.net/publication/269107473_What_is_governance/link/548173090cf22525dcb61443/download%0Ahttp://www.econ.upf.edu/~reynal/Civil wars_12December2010.pdf%0Ahttps://think-asia.org/handle/11540/8282%0Ahttps://www.jstor.org/stable/41857625
- Monalisa, G. (2019). *Strategi Pembelajaran PAI Pada PAUD*. https://www.google.co.id/books/edition/Strategi_Pembelajaran_PAI_Pada_P

- AUD/eREYEAAAQBAJ?hl=id&gbpv=1&dq=pengertian+efektivitas+pemb elajaran&pg=PA12&printsec=frontcover
- Murtianto, Y. H., Sutrisno, S., Nizaruddin, N., & Muhtarom, M. (2019). Effect of Learning Using Mathematica Software Toward Mathematical Abstraction Ability, Motivation, and Independence of Students in Analytic Geometry. *Infinity Journal*, 8(2), 219. https://doi.org/10.22460/infinity.v8i2.p219-228
- Nasution, S. H. (2018). Pentingnya literasi teknologi bagi Mahasiswa Calon Guru Matematika. In *Jurnal Kajian Pembelajaran Matematika* (Vol. 2, Issue April, pp. 14–18).
- Noorruwaida, S. (2022). Pengembangan E-Modul Ipa Berbasis Problem Based Learning Untuk Meningkatkan Literasi Sains Siswa. *Kwangsan: Jurnal Teknologi Pendidikan*, 7(2), 91. https://doi.org/10.31800/jtp.kw.v7n2.p91-103
- Nugroho, A. A. (2012). KEEFEKTIFAN PEMBELAJARAN MATEMATIKA BERBASIS KONTRUKTIVISME PADA MATA KULIAH MATEMATIKA DASAR. *JMP*, 4, 173–184.
- Nugroho, A. A., Harun, L., & Rahmawati, N. D. (2017). *Jurnal Euclid, Vol.3, No.1, p.411.3*(1), 411–422.
- Nurdwiandari, P. (2018). Analisis kemampuan berpikir kritis matematik dan kemampuan diri siswa smp di kabupaten bandung barat. 1(5), 1005–1014.
- Nurrita. (2018). Kata Kunci : Media Pembelajaran dan Hasil Belajar Siswa. *Misykat*, *03*, 171–187.
- Nuryanti, L., Zubaidah, S., & Diantoro, M. (2018). Analisis Kemampuan Berpikir Kritis Siswa smp. *Prosiding Konferensi Nasional Penelitian Matematika Dan Pembelajarannya*, 2006, 179–186.
- Permana, N. S. (2022). Mendesain Hybrid Learning Dengan Model. *Jurnal Pendidikan Agama Katolik (JPAK)*, 22(1), 105–115.
- Pramuditya, S. A., Nopriana, T., & Yolanda, O. M. (2022). *Mudah Membuat Bahan Ajar Matematika menggunakan Canva Google Buku*. https://books.google.co.id/books?hl=id&lr=&id=e1liEAAAQBAJ&oi=fnd&pg=PA1&dq=%22pemanfaatan+canva%22+modul+pembelajaran+matematika&ots=k64pHoe1dn&sig=Rrfi5oGF9EkrWgNZX8W4cP01I-Y&redir_esc=y#v=onepage&q=%22pemanfaatan canva%22 modul pembelajaran matematika&
- Pratiwi, F. P. (2021). PENGEMBANGAN MEDIA KARTU BERGAMBAR UNTUK MENINGKATKAN KEMAMPUAN BERPIKIR KRITIS SISWA KELAS IV SEKOLAH DASAR. *JPGSD*, *10*, 421–430.
- Pujiastutik, H. (2017). Efektivitas Penggunaan Media Pembelajaran E- learning Berbasis Web pada Mata Kuliah Belajar Pembelajaran I Terhadap Hasil

- Belajar Mahasiswa. *Jurnal Teladan*, *4*(1), 12. http://journal.unirow.ac.id/index.php/teladan/article/view/46
- Purba, Y. A., & Harahap, A. (2022). Pemanfaatan Aplikasi Canva Sebagai Media Pembelajaran Matematika Di SMPN 1 NA IX-X Aek Kota Batu. *Jurnal Cendekian: Jurnal Pendidikan Matematika*, 06, 1325–1334.
- Puspita, A., Kurniawan, A. D., & Rahayu, H. M. (2017). Pengembangan Media Pembelejaran Booklet Pada Materi Sistem Imun Terhadap Hasil Belajar Siswa Kelas XI SMAN 8 Pontianak. *Jurnal Bioeducation*, 4(1), 64–73.
- Putri, D. F. R., & Zuhdi, U. (2018). Pengaruh Penggunaan Media Stop Motion terhadap Hasil Belajar IPS Materi Detik-Detik Proklamasi Siswa Kelas V SDN Gadingmangu 1 Jombang. *Jurnal Penelitian Pendidikan Guru Sekolah Dasar*, 6(12), 2316–2325.
- Rahayu, N., & Alyani, F. (2020). Kemampuan Berpikir Kritis Matematis Ditinjau Dari Adversity Quotient. *Prima: Jurnal Pendidikan Matematika*, 4(2), 121. https://doi.org/10.31000/prima.v4i2.2668
- Rahmawati, N. D., Nugroho, A. A., & Harun, L. (2019). *Implementasi* Pembelajaran Matematika Berbasis Bahan Ajar Wolfram Mathematica Pada Materi Aljabar Linear. 6(1), 44–52.
- Rayanto, Y. H., & Sugianti. (2020). *PENELITIAN PENGEMBANGAN MODEL ADDIE DAN R2D2*. https://www.google.co.id/books/edition/PENELITIAN_PENGEMBANGAN _MODEL_ADDIE_DAN/pJHcDwAAQBAJ?hl=id&gbpv=1&dq=penelitian +pengembangan&printsec=frontcover
- Ricu Sidiq, & Najuah. (2020). Pengembangan E-Modul Interaktif Berbasis Android pada Mata Kuliah Strategi Belajar Mengajar. *Jurnal Pendidikan Sejarah*, *9*(1), 1–14. https://doi.org/10.21009/jps.091.01
- Rismayanti, T. A., Anriani, N., & Sukirwan, S. (2022). Pengembangan E-Modul Berbantu Kodular pada Smartphone untuk Meningkatkan Kemampuan Berpikir Kritis Matematis Siswa SMP. *Jurnal Cendekia : Jurnal Pendidikan Matematika*, *6*(1), 859–873. https://doi.org/10.31004/cendekia.v6i1.1286
- Ruli, E., & Indarini, E. (2022). View of Meta Analisis Pengaruh Model Pembelajaran Problem Based Learning Terhadap Kemampuan Berpikir Kritis Dalam Pembelajaran Matematika Di Sekolah Dasar.pdf. *Jurnal Pendidikan Dan Konseling*, 4, 4.
- Sanjaya Wina. (2010). *Perencanaan dan Desain Sistem pembelajaran (cetakan ketiga)*. 283(4). http://library.fis.uny.ac.id/opac/index.php?p=show_detail&id=2165
- Saputro, B. (2016). Manajemen Penelitian Pengembangan (RnD) bagi Penyusun Tesis dan Disertasi. *Aswaja Pressindo, Yogyakarta*.

- Sari, I., & Siswati. (2016). HUBUNGAN ANTARA KETERTARIKAN INTERPERSONAL DENGAN PERILAKU PROSOSIAL PADA REMAJA SMA ISLAM HIDAYATULLAH SEMARANG. *Empati*, *5*, 711–716.
- Setiawan, B. A., Cholily, Y. M., & Khozin, K. (2021). Al-Islam dan Kemuhammadiyahan: Kajian Riset Metakognisi, Efikasi Diri, dan Motivasi Siswa dalam Efektivitas Pembelajaran (I. Zumrotin (ed.); 1st ed.). Academia Publication.
- Setiawan, T. H., & Aden. (2020). Efektifitas Penerapan Blended Learning Dalam Upaya Meningkatkan Kemampuan Akademik Mahasiswa Melalui Jejaring Schoology Di Masa Pandemi Covid-19. *Jurnal Pembelajaran Matematika Inovatif (JPMI)*, *3*(5), 493–506. https://doi.org/10.22460/jpmi.v3i5.493-506
- Shodiqin, A., & Fakhrudin. (2011). Pembelajaran Matematika Dengan Bantuan Software MATHEMATICA UNTUK MENINGKATKAN HASIL BELAJAR MATEMATIK MAHASISWA CALON GURU MATEMATIKA (Studi Eksperimen pada Mahasiswa Calon Guru Matematika di IKIP PGRI Semarang). 1–22.
- Sholahudin, U. (2017). Pemanfaatan Perangkat Lunak Mathematica Dalam Perkuliahan Kalkulus Materi Limit Fungsi. November, 557–567. https://doi.org/10.1063/1.49661
- Silalahi, M. P. B., & Chan, F. (2022). Implementasi Lembar Kerja Peserta Didik Interaktif Berbasis HOTS Tema 7 Subtema 1 di Kelas 1 SD. *Jurnal Tonggak Pendidikan Dasar*, *1*(abad 21), 55–66.
- Sitohang, K. (2019). *Berpikir Kritis kecakapan hidup di era digital*. PT Kanisius. https://www.google.co.id/books/edition/Berpikir_Kritis/5vr6DwAAQBAJ?hl =id&gbpv=1&dq=facione+berpikir+kritis&printsec=frontcover
- Siyoto, S., & Sodik, A. (2015). *DASAR METODOLOGI PENELITIAN Google Books* (Ayup (ed.); 1st ed.). Literasi Media Publishing. https://www.google.co.id/books/edition/DASAR_METODOLOGI_PENELI TIAN/QPhFDwAAQBAJ?hl=id&gbpv=1&dq=teknik+pengumpulan+data+d okumentasi&printsec=frontcover
- Sofanudin, A. (2020). *Kapita Selekta KF Doktor: Melintasi Tapal Batas Keilmuan Wan Lelly Heffen Google Buku* (1st ed.). IPB Press Printing. https://books.google.co.id/books?id=UCxeEAAAQBAJ&pg=PA116&dq=kri teria+reliabilitas+dalam+azwar&hl=id&newbks=1&newbks_redir=0&source=gb_mobile_search&ovdme=1&sa=X&ved=2ahUKEwjD9Ly2m7n5AhWG 03MBHd1aDUsQ6wF6BAgLEAU#v=onepage&q=kriteria reliabilitas dalam azwa
- Suarsana, I. M., & Mahayukti, G. A. (2013). Pengembangan E-Modul Berorientasi Pemecahan Masalah Untuk Meningkatkan Keterampilan Berpikir Kritis Mahasiswa. *Jurnal Nasional Pendidikan Teknik Informatika* (*JANAPATI*), 2(3), 193. https://doi.org/10.23887/janapati.v2i3.9800

- Sudjana. (2005). Metoda Statistika (6th ed.). PT. Tarsito.
- Sugianto, D., Abdullah, A. G., Elvyanti, S., & Muladi, Y. (2017). Modul Virtual: Multimedia Flipbook Dasar Teknik Digital. *Innovation of Vocational Technology Education*, *9*(2), 101–116. https://doi.org/10.17509/invotec.v9i2.4860
- Sugiyono. (2008). *Metode penelitian pendidikan: (pendekatan kuantitatif, kualitatif dan R* & *D*). Alfabeta.
- Sugiyono. (2016). statistika untuk penelitian (27th ed.). alfabeta.
- Sugiyono. (2018). *Metode Penelitian Kuantitatif, Kualitatif, dan R&D* (27th ed.). ALFABETA.
- Sumiati, A., Widiastuti, U., & Suhud, U. (2018). Workshop Teknik Menganalisis Butir Soal dalam Meningkatkan Kompetensi Guru di SMK Cileungsi Bogor. *Jurnal Pemberdayaan Masyarakat Madani (JPMM)*, 2(1), 136–153. https://doi.org/10.21009/jpmm.002.1.10
- Surani, D. (2019). Studi Literatur: Peran Teknolog Pendidikan Dalam Pendidikan 4.0. *Prosiding Seminar Nasional Pendidikan FKIP*, 2(1), 456–469. https://jurnal.untirta.ac.id/index.php/psnp/article/view/5797
- Susanti, W. (2021). Pembelajaran aktif, kreatif, dan mandiri pada mata kuliah algoritma pemprograman (Alviana (ed.); 1st ed.). Samudra Biru.
- Ula, I. R., & Fadila, A. (2018). Pengembangan E-Modul Berbasis Learning Content Development System Pokok Bahasan Pola Bilangan SMP. *Desimal: Jurnal Matematika*, 1(2), 201. https://doi.org/10.24042/djm.v1i2.2563
- Utami, Y. U., & Maskai, S. (2020). Analisis Ketuntasan Belajar Matematika Model Asynchronous Pada Siswa SMKN 9 Bandar Lmapung Melalui Google Classroom. *Jurnal Ilmiah Matematika Realistik (JI-MR)*, 3(1), 12–21.
- Widodo, P. B. (2006). Reliabilitas dan Validitas Konstruk Skala Konsep Diri Untuk Mahasiswa Indonesi. *Universitas Stuttgart*, *3*(1), 1–9.
- Yolanda, D. D. (2020). *PEMAHAMAN KONSEP MATEMATIKA DENGAN METODE DISCOVERY Google Books*. Guepedia. https://www.google.co.id/books/edition/PEMAHAMAN_KONSEP_MATE MATIKA_DENGAN_METOD/mgVMEAAAQBAJ?hl=id&gbpv=1&dq=da ya+pembeda+soal+arikunto&pg=PA80&printsec=frontcover
- Zahwa, F. A. (2022). Pemilihan Pengembangan Media Pembelajaran. *Jurnal Penelitian Pendidikan Dan Ekonomi*, *19*(01), 61–78. https://www.journal.uniku.ac.id/index.php/Equilibrium.
- Zubaidah, S. (2010). Berfikir Kritis: Kemampuan Berpikir Tingkat Tinggi Yang dapat Dikembangkan Melalui Pembelajaran Sains. Seminar Nasional Sains 2010 Dengan Tema "Optimalisasi Sains Untuk Memberdayakan Manusia,"

January 2010. https://www.researchgate.net/profile/Siti-Zubaidah-7/publication/318040409_Berpikir_Kritis_Kemampuan_Berpikir_Tingkat_T inggi_yang_Dapat_Dikembangkan_melalui_Pembelajaran_Sains/links/5956 4c650f7e9b591cda994b/Berpikir-Kritis-Kemampuan-Berpikir-Tingkat-Tingg

LAMPIRAN

Daftar Nama Kelas VIII H

SMP N 2 Weleri

(Kelas Uji Coba)

No	Kode	Nama
1	UC-1	Adilatun Nisa
2	UC-2	Aditya Nugroho
3	UC-3	Agnesia Apriliani Saputri
4	UC-4	Intan Nur Aini
5	UC-5	Juniar Aulia Anisfa Sari
6	UC-6	Khansa Vebi Azzahra
7	UC-7	Khoirul Anwar
8	UC-8	Khoirun Nasichah
9	UC-9	Khoirunnisa
10	UC-10	Layla Muliyahsari
11	UC-11	M Novriansyah Fadhil A
12	UC-12	Masanda Beauty Hu
13	UC-13	Miftachur Rahma Arizka
14	UC-14	Muamar Al Khadafi
15	UC-15	Muhammad Revan Tri Maulana
16	UC-16	Muhammad Riski Saputra
17	UC-17	Muhammad Danial Aqwa
18	UC-18	Naura Afifah Ramadhani
19	UC-19	Prasetyo Ferlanda
20	UC-20	Shofian Zakin
21	UC-21	Trina Ila Risma
22	UC-22	Vian Agus Tino
23	UC-23	Mukhammad Rizqi Ramadhani
24	UC-24	Wafiq Nur Maulidah
25	UC-25	Yunita Nuril Anjani
26	UC-26	Yunita Sari
27	UC-27	Zahra Alisyia Bella
28	UC-28	Zahra Nadia Putri
29	UC-29	Zidni Riski Ahmad

Daftar Nama Kelas VIII F

SMP N 2 Weleri

(Kelas Eksperimen)

No	Kode	Nama
1	E-1	Andharysta Alfarenza
2	E-2	Andi Awaludin Najib
3	E-3	Anisatu Rofiqoh
4	E-4	Asvatik Faisal Mahmudi
5	E-5	Asy'abil Maulana Herlambang
6	E-6	Fatimatus Az Zahro
7	E-7	Ferbi Ardiansyah
8	E-8	Gianti Lusiana
9	E-9	Gustika Dina Azizah
10	E-10	Hafiz Eka Maulana
11	E-11	Haliza Tri Amalia
12	E-12	Indah Cahaya Arofah
13	E-13	Islakhul Mahmudah
14	E-14	Kurnia Risqi Imansyah
15	E-15	Lailatul Maghfiroh
16	E-16	Muhammad Jamaludin Mahfudz
17	E-17	Muhammad Nasrul Taufiq
		Muntoha
18	E-18	Muhammad Riskon Nadif
19	E-19	Rama Nursaputra
20	E-20	Rizki Wiranata
21	E-21	Rofil Dafit Setiyanto
22	E-22	Sabiqo Agus Mumtaza
23	E-23	Sapna Melani
24	E-24	Satriya Prayudia
25	E-25	Shelley Nabilatul Fadhilah
26	E-26	Shevino Riga Dwi Rahardja
27	E-27	Siti Solekhah
28	E-28	Sofi Anggun Astuti
29	E-29	Sowalatul Badriyah
30	E-30	Unzhakiyah Warisul Ditsy

Daftar Nama Kelas VIII G

SMP N 2 Weleri

(Kelas Kontrol)

No	Kode	Nama
1	K-1	Angga Ardiansyah
2	K-2	Arini Ptri Lutfianingrum
3	K-3	Arlyna Sintya Putri
4	K-4	Gadis Nur Aini
5	K-5	Harlisa Amelia
6	K-6	Inka Yuliana
7	K-7	Irsa Anastasya Putri
8	K-8	Jihan Febriana
9	K-9	Jonatha Randy Saputra
10	K-10	Laily Rahmawati
11	K-11	M. Irsyadul Ibad
12	K-12	M. Salis Waidzon
13	K-13	Meydina Ayu Dwi Aryani
14	K-14	Muhammad Akbar Mujtaba
15	K-15	Muhammad Axl Syaputra
16	K-16	Muhammad Dani Rizki Fahrurrozi
17	K-17	Muhammad Vikar Hilmi Azizi
18	K-18	Narendra Satryo Utomo
19	K-19	Raya Mas Choirina
20	K-20	Riska Amalia
21	K-21	Soffi Angga Saputra
22	K-22	Syabrina Jesica Mega Utami
23	K-23	Syahrul Ma'arif
24	K-24	Tiyas Septianingrum
25	K-25	Tsalist Tegar Wicaksono
26	K-26	Vennessa
27	K-27	Viras Affan Pratama
28	K-28	Yenny Eka Aryani

Daftar Nilai Penilaian Tengah Semester 2 Kelas VIII F SMP N 2 Weleri

(Kelas Eksperimen)

No	Kode	Nilai
1	E-1	70
2	E-2	80
3	E-3	84
4	E-4	70
5	E-5	84
6	E-6	70
7	E-7	70
8	E-8	70
9	E-9	85
10	E-10	70
11	E-11	80
12	E-12	75
13	E-13	85
14	E-14	75
15	E-15	75
16	E-16	75
17	E-17	85
18	E-18	85
19	E-19	75 78
20	E-20	78
21	E-21	78
22	E-22	78
23	E-23	79
24	E-24	85
25	E-25	82
26	E-26	90
27	E-27	87
28	E-28	85
29	E-29	90
30	E-30	95

Lampiran 5

Daftar Nilai Penilaian Tengah Semester 2 Kelas VIII G SMP N 2 Weleri

(Kelas Kontrol)

No	Kode	Nilai
1	K-1	70
2	K-2	90
2 3 4	K-3	90
4	K-4	90
5	K-5	100
	K-6	100
7	K-7	70
8	K-8	80
9	K-9	100
10	K-10	80
11	K-11	70
12	K-12	86
13	K-13	80
14	K-14	80
15	K-15	85
16	K-16	70
17	K-17	70
18	K-18	70
19	K-19	90
20	K-20	90
21	K-21	75
22	K-22	75
23	K-23	78
24	K-24	78
25	K-25	86
26	K-26	86
27	K-27	78
28	K-28	86

SILABUS PEMBELAJARAN

Sekolah : SMP Negeri 2 Weleri

Kelas : VIII

Mata Pelajaran : Matematika

Semester : 1

KI 1-2: **Menghargai dan menghayati** ajaran agama yang dianutnya serta **Menghargai dan menghayati** perilaku jujur, disiplin, santun, percaya diri, peduli, dan bertanggung jawab dalam berinteraksi secara efektif sesuai dengan perkembangan anak di lingkungan, keluarga, sekolah, masyarakat dan lingkungan alam sekitar, bangsa, negara, dan kawasan regional.

KI 3 : Memahami dan menerapkan pengetahuan faktual, konseptual, prosedural, dan metakognitif pada tingkat teknis dan spesifik sederhana berdasarkan rasa ingin tahunya tentang ilmu pengetahuan, teknologi, seni, budaya dengan wawasan kemanusiaan, kebangsaan, dan kenegaraan terkait fenomena dan kejadian tampak mata.

KI 4 : Menunjukkan keterampilan menalar, mengolah, dan menyaji secara kreatif, produktif, kritis, mandiri, kolaboratif, dan komunikatif, dalam ranah konkret dan ranah abstrak sesuai dengan yang dipelajari di sekolah dan sumber lain yang sama dalam sudut pandang teor

Kompetensi Dasar	Materi	Kegiatan Pembelajaran	Indikator Pencapaian	Penilaian	Alokasi	Sumber
	Pembelajaran				Waktu	Belajar
3.5 Menjelaskan	Persamaan Linear	Mengumpulkan informasi	3.5.1 siswa dapat mengidentifikasi	Tes	6 JP	Buku Teks,
sistem persamaan	Dua Variabel	tentang sistem persamaan	konsep persamaan linear dua	Uraian		e-modul
linear dua variabel dan	• Penyelesaian	linear dua variabel	variabel	Tertulis		berbantuan
penyelesaiannya yang	persamaan	Membuat model matematika	3.5.2 siswa dapat membuat model			wolfram
dihubungkan dengan	linear dua	dari ilustrasi permasalahan	matematika dari sistem persamaan			mathematica
masalah kontekstual	variable	tentang sistem persamaan	linear dua variabel			
4.5 Menyelesaikan masalah yang berkaitan dengan sistem persamaan linear dua variabel	Model dan sistem persamaan linear dua variabel	persamaan linear dua variabel • Menyelesaikan masalah yang berkaitan dengan sistem persamaan linear dua variabel	4.5.1 siswa dapat menyelesaikan masalah kontekstual yang berkaitan dnegan sistem persamaan linear dua variabel dengan menggunakan salah satu metode			
				Kendal, 23	3 Mei 202	2

Guru Mata Pelajaran	Peneliti	
NIP.	NP.	18310075

Rencana Pelaksanaan Pembelajaran (RPP)

Kelas Eksperimen

Sekolah : SMP Negeri 2 Weleri

Kelas / Semester : VIII / 1

Mata Pelajaran : Matematika

Materi Pokok : Persamaan Linear Dua Variabel

Alokasi Waktu : 3 Pertemuan, 6 JP

A. Kompetensi Inti

KI 1-2: **Menghargai dan menghayati** ajaran agama yang dianutnya serta **Menghargai dan menghayati** perilaku jujur, disiplin, santun, percaya diri, peduli, dan bertanggung jawab dalam berinteraksi secara efektif sesuai dengan perkembangan anak di lingkungan, keluarga, sekolah, masyarakat dan lingkungan alam sekitar, bangsa, negara, dan kawasan regional.

KI 3 : Memahami dan menerapkan pengetahuan faktual, konseptual, prosedural, dan metakognitif pada tingkat teknis dan spesifik sederhana berdasarkan rasa ingin tahunya tentang ilmu pengetahuan, teknologi, seni, budaya dengan wawasan kemanusiaan, kebangsaan, dan kenegaraan terkait fenomena dan kejadian tampak mata.

KI 4 : Menunjukkan keterampilan menalar, mengolah, dan menyaji secara kreatif, produktif, kritis, mandiri, kolaboratif, dan komunikatif, dalam ranah konkret dan ranah abstrak sesuai dengan yang dipelajari di sekolah dan sumber lain yang sama dalam sudut pandang teori.

B. Kompetensi Dasar

Kompetensi Pengetahuan	Kompetensi Keterampilan
3.5 Menjelaskan sistem persamaan	4.5 Menyelesaikan masalah yang
linear dua variabel dan penyelesaiannya	berkaitan dengan sistem persamaan
yang dihubungkan dengan masalah	linear dua variabel
kontekstual	
Indikator Pencap	aian Kompetensi
3.5.1 siswa dapat mengidentifikasi	4.5.1 siswa dapat menyelesaikan
konsep persamaan linear dua	masalah kontekstual yang berkaitan
variabel	dnegan sistem persamaan linear dua
3.5.2 siswa dapat membuat model	variabel dengan menggunakan salah
matematika dari sistem persamaan	satu metode
linear dua variabel	

C. Tujuan Pembelajaran

Melalui kegiatan pembelajaran, tanya jawab dan penugasan, siswa dapat mengidentifikasi Persamaan Linear Dua Variabel dengan teliti, siswa dapat menganalisis soal cerita dari masalah sehari-hari dengan tepat dalam menyusun model matematika dari masalah sehari-hari yang berkaitan dengan Sistem Persamaan Linear Dua Variabel setelah memahami contoh permasalahan kontekstual yang disajikan, dan yang terakhir siswa dapat menyelesaiakan permasalahan tersebut dengan tepat dan penuh tanggung jawab.

D. Materi Pembelajaran

Pertemuan pertama : konsep SPLDV dan membuat model matematika dari permasalahan kontekstual

Pertemuan kedua : metode penyelesaian SPLDV

Pertemuan ketiga : menyelesaikan permasalahan kontekstual yang berkaitan

dengan SPLDV

E. Model Pembelajaran

Model Pembelajaran Discovery Learning dengan pendekatan saintifik

F. Media dan Alat yang Dibutuhkan

Media: e-modul berbantuan wolfram mathematica

Alat : Papan tulis, spidol, smartphone

G. Sumber Belajar

E-modul berbantuan wolfram mathematica

H. Langkah-langkah Pembelajaran

Pertemuan Pertama (2 JP)

Kegiatan	Deskripsi	Alokasi
Tiogramm	Desirips:	Waktu
Pendahuluan	Fase 1 : Pembuka	
	1. Guru mengucapkan	
	salam,selanjutnya menanyakan	
	kabar siswa.	
	2. Salah satu siswa memimpin doa	
	untuk mengawali proses	
	pembelajaran.	
	3. Guru mengecek kehadiran siswa	
	dan menanyakan kabar siswa.	
	Fase 2 : Motivasi	
	4. Guru memberikan pertanyaan	
	mengenai SPLDV dalam	
	kehidupan sehari-hari.	
	Fase 3 : Tujuan Pembelajaran	
	5. Guru menyampaikan tujuan	
	pembelajaran yang hendak dicapai.	
	Fase 4 : Apersepsi	
	6. Guru mengajak siswa untuk	

mengingat kembali tentang materi yang berkaitan dengan SPLDV yaitu persamaan linear satu variabel Inti : Orientasi Siswa Kepada Fase Masalah 7. Guru membentuk siswa ke dalam beberapa kelompok. Setiap kelompok terdiri 4-5 siswa. 8. Guru membagikan *link e-modul* kepada siswa 9. Siswa diminta membaca petunjuk dan bertanya sebelum mempelajari materi melalui aplikasi android. 10. Siswa mengamati dan mencermati materi yang berhubungan dengan konsep SPLDV dan membuat model matematika dari suatu masalah. Fase 2 : Mengorganisasikan siswa untuk belajar 11. Siswa dipersilahkan untuk berdiskusi dengan kelompoknya tentang masalah yang diberikan. 12. Siswa didorong untuk memecahkan masalah dan aktif bertanya terkait konsep SPLDV dan model matematika yang berhubungan dengan SPLDV. (menanya).

13. Siswa diberikan kesempatan untuk menjawab pertanyaan teman yang bertanya atau memberikan tanggapan atas pertanyaan atau tanggapan teman yang bertanya.

Fase 3 : Membing Penyelidikan Individu

dan Kelompok

- 14. Selama siswa bekerja di dalam kelompok, guru memeperhatikan dan mendorong semua siswa untuk terlibat diskusi, dan mengarahkan bila ada kelompok yang melenceng dari materi.
- 15. Guru memberi bantuan berkaitan kesulitas yang dialami siswa secara individua tau kelompok.

Fase 4 : Mengembangkan dan Menyajikan

Hasil Karya/ Diskusi

untuk menyajikan hasil unjuk kerja kelompok dalam bentuk laporan latihan dan mempresentasikan hasil lembar kerja yang telah diselesaikan secara kelompok, dan kelompok lain memberikan tanggapan.

Fase 5 : Menganalisa dan Mengevaluasi Proses Pemecahan Masalah

17. Siswa mendapatkan klarifikasi

	berkaitan dengan hasil presentasi	
	siswa.	
Penutup	18. Guru bersama-sama dengan siswa	
	menyimpulkan kegiatan	
	pembelajaran yang telah	
	dilaksanakan.	
	19. Guru memberikan umpan balik	
	dengan mengajukan beberapa	
	pertanyaan sebagai wujud	
	penguatan kepada siswa.	
	20. Guru meminta siswa mempelajari	
	materi pertemuan selanjutnya.	
	21. Guru menutup kegiatan	
	pembelajaran dengan memberikan	
	salam dan doa.	

Pertemuan Kedua (2 JP)

Kegiatan	Deskripsi	Alokasi Waktu
Pendahuluan	Fase 1 : Pembuka	
	1. Guru mengucapkan	
	salam,selanjutnya menanyakan	
	kabar siswa.	
	2. Salah satu siswa memimpin doa	
	untuk mengawali proses	
	pembelajaran.	
	3. Guru mengecek kehadiran siswa	
	dan menanyakan kabar siswa.	
	Fase 2 : Motivasi	
	4. Guru memberikan pertanyaan	

manfaat belajar mengenai SPLDV dalam kehidupan seharihari. Fase 3: Tujuan Pembelajaran 5. Guru menyampaikan tujuan pembelajaran hendak yang dicapai. Fase 4: Apersepsi 6. Guru mengajak siswa untuk mengingat kembali tentang materi yang dipelajari di pertemuan pertama Inti Fase 1: Orientasi Siswa Kepada Masalah 7. Guru membentuk siswa ke dalam beberapa kelompok. Setiap kelompok terdiri 4-5 siswa. 8. Guru meminta siswa menyiapkan link e-modul sudah yang dibagikan kepada siswa 9. Siswa diminta membaca petunjuk dan bertanya sebelum mempelajari melalui materi aplikasi android. 10. Siswa mengamati dan mencermati materi yang berhubungan dengan SPLDV Fase 2: Mengorganisasikan siswa untuk belajar 11. Siswa dipersilahkan untuk

- berdiskusi dengan kelompoknya tentang masalah yang diberikan.
- 12. Siswa didorong untuk memecahkan masalah dan aktif bertanya terkait model penyelesaian SPLDV. (menanya).
- 13. Siswa diberikan kesempatan untuk menjawab pertanyaan teman yang bertanya atau memberikan tanggapan atas pertanyaan atau tanggapan teman yang bertanya.

Fase 3 : Membing Penyelidikan Individu dan Kelompok

- 14. Selama siswa bekerja di dalam kelompok, guru memeperhatikan dan mendorong semua siswa untuk terlibat diskusi, dan mengarahkan bila ada kelompok yang melenceng dari materi.
- 15. Guru memberi bantuan berkaitan kesulitas yang dialami siswa secara individua tau kelompok.

Fase 4 : Mengembangkan dan Menyajikan Hasil Karya/ Diskusi

16. Secara acak dipilih beberapa siswa untuk menyajikan hasil unjuk kerja kelompok dalam bentuk laporan latihan dan mempresentasikan hasil lembar

	kerja yang telah diselesaikan		
	secara kelompok, dan kelompok		
	lain memberikan tanggapan.		
	Fase 5 : Menganalisa dan		
	Mengevaluasi Proses Pemecahan		
	Masalah		
	17. Siswa mendapatkan klarifikasi		
	berkaitan dengan hasil presentasi		
	siswa.		
Penutup	18. Guru bersama-sama dengan		
	siswa menyimpulkan kegiatan		
	pembelajaran yang telah		
	dilaksanakan.		
	19. Guru memberikan umpan balik		
	dengan mengajukan beberapa		
	pertanyaan sebagai wujud		
	penguatan kepada siswa.		
	20. Guru meminta siswa mempelajari		
	materi pertemuan selanjutnya.		
	21. Guru menutup kegiatan		
	pembelajaran dengan		
	memberikan salam dan doa.		

Pertemuan Ketiga (2 JP)

Kegiatan	Deskripsi	Alokasi Waktu
Pendahuluan	Fase 1 : Pembuka	
	1. Guru mengucapkan	
	salam,selanjutnya menanyakan	
	kabar siswa.	

2.	Salah	satu	siswa	memimp	oin	doa
	untuk		menga	wali	pr	oses
	pembe	elajar	an.			

3. Guru mengecek kehadiran siswa dan menanyakan kabar siswa.

Fase 2: Motivasi

4. Guru memberikan pertanyaan mengenai manfaat belajar SPLDV dalam kehidupan sehari-hari.

Fase 3: Tujuan Pembelajaran

5. Guru menyampaikan tujuan pembelajaran yang hendak dicapai.

Fase 4: Apersepsi

 Guru mengajak siswa untuk mengingat kembali tentang materi yang dipelajari di pertemuan pertama

Inti Fase 1 : Orientasi Siswa Kepada Masalah

- Guru membentuk siswa ke dalam beberapa kelompok. Setiap kelompok terdiri 4-5 siswa.
- Guru meminta siswa menyiapkan link e-modul kyang sudah dibagikan kepada siswa
- Siswa diminta membaca petunjuk dan bertanya sebelum mempelajari materi melalui aplikasi android.
- 10. Siswa mengamati dan mencermati materi yang berhubungan dengan m SPLDV

Fase 2 : Mengorganisasikan siswa untuk

belajar

- 11. Siswa dipersilahkan untuk berdiskusi dengan kelompoknya tentang masalah yang diberikan.
- 12. Siswa didorong untuk memecahkan masalah dan aktif bertanya terkait penyelesaian SPLDV yang berkaitan dengan kehiduoan sehari-hari. (menanya).
- 13. Siswa diberikan kesempatan untuk menjawab pertanyaan teman yang bertanya atau memberikan tanggapan atas pertanyaan atau tanggapan teman yang bertanya.

Fase 3 : Membing Penyelidikan Individu

dan Kelompok

- 14. Selama siswa bekerja di dalam kelompok, guru memeperhatikan dan mendorong semua siswa untuk terlibat diskusi, dan mengarahkan bila ada kelompok yang melenceng dari materi.
- 15. Guru memberi bantuan berkaitan kesulitas yang dialami siswa secara individua tau kelompok.

Fase 4 : Mengembangkan dan Menyajikan

Hasil Karya/ Diskusi

	16. Secara acak dipilih beberapa siswa	
	untuk menyajikan hasil unjuk	
	kerja kelompok dalam bentuk	
	laporan latihan dan	
	mempresentasikan hasil lembar	
	kerja yang telah diselesaikan	
	secara kelompok, dan kelompok	
	lain memberikan tanggapan.	
	Fase 5 : Menganalisa dan Mengevaluasi	
	Proses Pemecahan Masalah	
	17. Siswa mendapatkan klarifikasi	
	berkaitan dengan hasil presentasi	
	siswa.	
Penutup	18. Guru bersama-sama dengan siswa	
r	menyimpulkan kegiatan	
	pembelajaran yang telah	
	dilaksanakan.	
	19. Guru memberikan umpan balik	
	dengan mengajukan beberapa	
	pertanyaan sebagai wujud	
	penguatan kepada siswa.	
	20. Guru meminta siswa mempelajari	
	materi pertemuan selanjutnya.	
	21. Guru menutup kegiatan	
	pembelajaran dengan memberikan	
	salam dan doa.	
	Suluin dun dod.	

I. Teknik Penilaian

Teknik Penilaian : Tes Tertulis

Bentuk Instrumen : Uraian

Instrumen Penilaian : Terlampir

Kendal, 23 Mei 2022	
Guru Mata Pelajaran	Peneliti
NIP.	NPM. 18310075

Rencana Pelaksanaan Pembelajaran (RPP)

Kelas Kontrol

Sekolah : SMP Negeri 2 Weleri

Kelas / Semester : VIII / 1

Mata Pelajaran : Matematika

Materi Pokok : Persamaan Linear Dua Variabel

Alokasi Waktu : 3 Pertemuan, 6 JP

A. Kompetensi Inti

KI 1-2: **Menghargai dan menghayati** ajaran agama yang dianutnya serta **Menghargai dan menghayati** perilaku jujur, disiplin, santun, percaya diri, peduli, dan bertanggung jawab dalam berinteraksi secara efektif sesuai dengan perkembangan anak di lingkungan, keluarga, sekolah, masyarakat dan lingkungan alam sekitar, bangsa, negara, dan kawasan regional.

KI 3 : Memahami dan menerapkan pengetahuan faktual, konseptual, prosedural, dan metakognitif pada tingkat teknis dan spesifik sederhana berdasarkan rasa ingin tahunya tentang ilmu pengetahuan, teknologi, seni, budaya dengan wawasan kemanusiaan, kebangsaan, dan kenegaraan terkait fenomena dan kejadian tampak mata.

KI 4 : Menunjukkan keterampilan menalar, mengolah, dan menyaji secara kreatif, produktif, kritis, mandiri, kolaboratif, dan komunikatif, dalam ranah konkret dan ranah abstrak sesuai dengan yang dipelajari di sekolah dan sumber lain yang sama dalam sudut pandang teori.

B. Kompetensi Dasar

Kompetensi Pengetahuan	Kompetensi Keterampilan		
3.5 Menjelaskan sistem persamaan	4.5 Menyelesaikan masalah yang		
linear dua variabel dan penyelesaiannya	berkaitan dengan sistem persamaan		
yang dihubungkan dengan masalah	linear dua variabel		
kontekstual			
Indikator Pencap	aian Kompetensi		
3.5.1 siswa dapat mengidentifikasi	4.5.1 siswa dapat menyelesaikan		
konsep persamaan linear dua	masalah kontekstual yang berkaitan		
variabel	dnegan sistem persamaan linear dua		
3.5.2 siswa dapat membuat model	variabel dengan menggunakan salah		
matematika dari sistem persamaan	satu metode		
linear dua variabel			

C. Tujuan Pembelajaran

Melalui kegiatan pembelajaran, tanya jawab dan penugasan, siswa dapat mengidentifikasi Persamaan Linear Dua Variabel dengan teliti, siswa dapat menganalisis soal cerita dari masalah sehari-hari dengan tepat dalam menyusun model matematika dari masalah sehari-hari yang berkaitan dengan Sistem Persamaan Linear Dua Variabel setelah memahami contoh permasalahan kontekstual yang disajikan, dan yang terakhir siswa dapat menyelesaiakan permasalahan tersebut dengan tepat dan penuh tanggung jawab.

D. Materi Pembelajaran

Pertemuan pertama : konsep SPLDV dan membuat model matematika dari permasalahan kontekstual

Pertemuan kedua : motode penyelesaian SPLDV

Pertemuan ketiga : menyelesaikan permasalahan kontekstual yang berkaitan

dengan SPLDV

E. Model Pembelajaran

Model : ceramah, diskusi, dan tanya jawab

Metode : konvensional

F. Media dan Alat yang Dibutuhkan

Media: Buku Teks

Alat : Papan tulis, spidol

G. Sumber Belajar

Buku paket Matematika

H. Langkah-langkah Pembelajaran

Pertemuan Pertama (2 JP)

Kegiatan	Deskripsi	Alokasi Waktu
Pendahuluan	Guru mengucapkan salam,selanjutnya menanyakan kabar siswa.	
	Salah satu siswa memimpin doa untuk mengawali proses pembelajaran.	
	3. Guru mengecek kehadiran siswa	
	dan menanyakan kabar siswa. 4. Guru memberikan pertanyaan mengenai manfaat belajar SPLDV	
	dalam kehidupan sehari-hari.	
	5. Guru menyampaikan tujuan pembelajaran yang hendak	
	dicapai.	
	6. Guru mengajak siswa untuk mengingat kembali tentang materi	

	yang berkaitan dengan SPLDV	
	yaitu persamaan linear satu	
	variabel	
Inti	7. Siswa memperhatikan guru	
	menjelaskan materi konsep	
	SPLDV dan model matematika	
	dari suatu permasalahan yang	
	diberikan oleh guru. (mengamati)	
	8. Siswa menanggapi materi yang	
	disamapaikan oleh guru. Pada saat	
	ini siswa dilatih untuk	
	mengembangkan rasa ingin	
	tahunya (menanya)	
	9. Guru memberikan lembar soal	
	sebagai bahan pemahaman siswa.	
	(mengeksplorasi)	
	10. Setelah itu guru meminta salah	
	satu siswa menuliskan hasil	
	pekerjaannya didepan kelas.	
	11. Guru mengoreksi hasil pekerjaan	
	siswa dipapan tulis.	
	12. Jika ada kesalahan guru	
	menunjukkan jawaban yang benar	
	beserta langkahnya dan	
	mengingatkan point penting dalam	
	penyelesaian yang harus diingat.	
	13. Guru memberi feedback pada	
	siswa yang sudah menuliskan hasil	
	pekerjaannya didepan kelas.	
Penutup	14. Guru bersama-sama dengan siswa	

menyimpulkan kegiatan
pembelajaran yang telah
dilaksanakan.
15. Guru memberikan umpan balik
dengan mengajukan beberapa
pertanyaan sebagai wujud
penguatan kepada siswa.
16. Guru meminta siswa mempelajari
materi pertemuan selanjutnya.
17. Guru menutup kegiatan
pembelajaran dengan memberikan
salam dan doa.

Pertemuan Kedua (2 JP)

Kegiatan	Deskripsi	Alokasi Waktu
Pendahuluan	Guru mengucapkan salam,selanjutnya menanyakan kabar siswa.	
	Salah satu siswa memimpin doa untuk mengawali proses pembelajaran.	
	3. Guru mengecek kehadiran siswa dan menanyakan kabar siswa.	
	4. Guru memberikan pertanyaan mengenai manfaat belajar SPLDV dalam kehidupan seharihari.	
	5. Guru menyampaikan tujuan pembelajaran yang hendak	

	dicapai.	
	6. Guru mengajak siswa untuk	
	mengingat kembali tentang	
	materi pada pertemuan	
	sebelumnya	
Inti	7. Siswa memperhatikan guru	
	menjelaskan materi model	
	penyelesaian SPLDV	
	(mengamati)	
	8. Siswa menanggapi materi yang	
	disamapaikan oleh guru. Pada	
	saat ini siswa dilatih untuk	
	mengembangkan rasa ingin	
	tahunya (menanya)	
	9. Guru memberikan lembar soal	
	sebagai bahan pemahaman siswa.	
	(mengeksplorasi)	
	10. Setelah itu guru meminta salah	
	satu siswa menuliskan hasil	
	pekerjaannya didepan kelas.	
	11. Guru mengoreksi hasil pekerjaan	
	siswa dipapan tulis.	
	12. Jika ada kesalahan guru	
	menunjukkan jawaban yang	
	benar beserta langkahnya dan	
	mengingatkan point penting	
	dalam penyelesaian yang harus	
	diingat.	
	13. Guru memberi feedback pada	
	siswa yang sudah menuliskan	
	hasil pekerjaannya didepan kelas.	

Penutup	14. Guru bersama-sama dengan	
	siswa menyimpulkan kegiatan	
	pembelajaran yang telah	
	dilaksanakan.	
	15. Guru memberikan umpan balik	
	dengan mengajukan beberapa	
	pertanyaan sebagai wujud	
	penguatan kepada siswa.	
	16. Guru meminta siswa	
	mempelajari materi pertemuan	
	selanjutnya.	
	17. Guru menutup kegiatan	
	pembelajaran dengan	
	memberikan salam dan doa.	

Pertemuan Ketiga (2 JP)

Kegiatan	Deskripsi	Alokasi Waktu
Pendahuluan	1. Guru mengucapkan salam,selanjutnya menanyakan kabar siswa.	
	 Salah satu siswa memimpin doa untuk mengawali proses pembelajaran. 	
	Guru mengecek kehadiran siswa dan menanyakan kabar siswa.	
	4. Guru memberikan pertanyaan mengenai manfaat belajar SPLDV dalam kehidupan sehari-hari.	
	5. Guru menyampaikan tujuan	

	pembelajaran yang hendak	
	dicapai.	
	6. Guru mengajak siswa untuk	
	mengingat kembali tentang materi	
	pada pertemuan sebelumnya	
Inti	7. Siswa memperhatikan guru	
	menjelaskan materi penyelesaian	
	SPLDV yang berkaitan dengan	
	masalah kontekstual yang	
	diberikan oleh guru. (mengamati)	
	8. Siswa menanggapi materi yang	
	disamapaikan oleh guru. Pada saat	
	ini siswa dilatih untuk	
	mengembangkan rasa ingin	
	tahunya (menanya)	
	9. Guru memberikan lembar soal	
	sebagai bahan pemahaman siswa.	
	(mengeksplorasi)	
	10. Setelah itu guru meminta salah	
	satu siswa menuliskan hasil	
	pekerjaannya didepan kelas.	
	11. Guru mengoreksi hasil pekerjaan	
	siswa dipapan tulis.	
	12. Jika ada kesalahan guru	
	menunjukkan jawaban yang benar	
	beserta langkahnya dan	
	mengingatkan point penting dalam	
	penyelesaian yang harus diingat.	
	13. Guru memberi feedback pada	
	siswa yang sudah menuliskan hasil	
	pekerjaannya didepan kelas.	
	1 3 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	

Penutup 14. Guru bersama-sama dengan siswa kegiatan menyimpulkan pembelajaran telah yang dilaksanakan. 15. Guru memberikan umpan balik mengajukan beberapa dengan pertanyaan sebagai wujud penguatan kepada siswa. 16. Guru meminta siswa mempelajari materi pertemuan selanjutnya. 17. Guru kegiatan menutup pembelajaran dengan memberikan salam dan doa.

I. Teknik Penilaian

Teknik Penilaian : Tes Tertulis

Bentuk Instrumen : Uraian

Instrumen Penilaian : Terlampir

Kendal, 23 Mei 2022	
Guru Mata Pelajaran	Peneliti

NIP. NPM. 18310075

KISI-KISI INSTRUMEN TES BERPIKIR KRITIS MATEMATIS

Indikator kemampuan berpikir kritis	Keterangan	So	al
Menginterpretasi	Memahami bentuk umum SPLDV	1	
	Memahami masalah dengan menuliskan apa	2,	3,
	yang diketahui dan ditanyakan soal dengan	4	
	tepat		
Menganalisis	Membuat model matematika dari suatu	2,	3,
	permasalahan	4	
Mengevaluasi	Menyelesaiakan permasalahan menggunakan	2,	3,
	salah satu metode	4	
Mengintervensi	Membuat kemipulan dari suatu	2,	3,
	permasalahan	4	

PEDOMAN PENSKORAN TES KEMAMPUAN BERPIKIR KRITIS MATEMATIS SISWA

No	Kunci Jawaban	Sko
1	a. $2x + 5y = 15$	2
	Bukan merupakan SPLDV, karena hanya terdiri dari	
	satu PLDV, SPLDV terdiri dari dua PLDV $(3x + y - 10)$	
	b. $\begin{cases} 3x + y = 10 \\ x + y = 4 \end{cases}$	2
	Merupakan SPLD karena terdiri dari dua PLDV dan	
	masing-masing variabelnya berpangkat satu	
	2x = 10	2
	3y = 6 bukan SPLDV karena masing-masing persamaan	
	hanya memuat satu variabel	
	•	4
	$In[4]:= ContourPlot[{3 \times + y == 10, \times + y == 4}, {x, 0, 10}, {y, 10}]$	-
	10[
	. \	
	8 -	
	6	
	Out[4]=	
	4	
	2	
	0	
	0 2 4 6 8	
	IID (2.1)	
	HP = (3,1)	2
2	a. Diketahui :Dian membeli sebuah buku tulis dan 3 buah pensil	2
	Santi membeli 3 buah buku tulis dan 2 buah pensil	
	Ditanya:	
	Berapa total uang yang harus Dewi bayar jika membeli	
	satu bauh buku tulis dan satu buah pensil?	
	b. Misalkan:	2
	Harga satu buah buku tulis : x	

	Harga satu buah pensil : y	
	Model matematika nya :	
	x + 3y = 9000	
	3x + 2y = 13000	
	c. Kalika persamaan 1 dengan 3 menjadi 3x + 9y	5
	= 27000	
	Persamaan 2 tetap	
	> Eliminasi	
	3x + 9y = 27000	
	3x + 2y = 13000 -	
	7y = 14000	
	y = 14000/7 = 2000	
	Substitusi $y = 2000$ ke persamaan $x + 3y = 9000$	
	x + 3y = 9000	
	x + 3(2000) = 9000	
	x + 6000 = 9000	
	x = 9000 - 6000	
	x = 3000	
	d. Total yang harus dibayar Dewi:	3
	x + y = 3000 + 2000	
	= 5000	
	Jadi total uang yang harus dibayar Dewi adalah 5000	
	e.	4
	$In[1] =: Solve[{3x + 9y = 27000, 3x + 2y = }]$	
	13000},{x,0,5000},{y,0,5000}]	
	$Out[1] =: \{x \longrightarrow 3000, y \longrightarrow 20000\}$	
	HP (3000,2000)	
	Jadi harga 1 buah buku = 3000 dan harga 1 buah	
	pensil = 2000	
3	Diketahui :	2
	Andre membeli 4 buah buku tulis dan 3 buah pensil	
	dengan membayar 15000	
	Andre membeli 2 buah buku tulis dan 4 buah pensil	
	dengan membayar 10000	
	Ditanya:	
	Berapa harga satu bauh buku tulis dan satu buah	
	pensil?	
	1.10.41311.	
	Misalkan:	2

	Harga satu buah buku tulis : x	
	Harga satu buah pensil : y	
	Model matematika nya :	
	4x + 3y = 15000	
	2x + 4y = 10000	
	Persamaan 1 tetap	5
	Kalikan persamaan 2 dengan 2 menjadi 4x + 8y =	
	20000	
	Eliminasi	
	4x + 3y = 15000	
	4x + 8y = 20000 -	
	-5y = -5000	
	y = -5000/-5 = 1000	
	Substitusi $y = 1000$ ke persamaan $2x +$	
	4y = 10000	
	2x + 4y = 10000	
	2x + 4(1000) = 10000	
	2x + 4000 = 10000	
	2x = 10000 - 4000	
	2x = 6000	
	x = 6000/2 = 3000	
	Jadi, Harga satu buah buku : x = 3000	3
	Harga satu buah pensil : $y = 1000$	
4	Diketahui :	2
	Sari membeli 1 kg mangga dan 3 kg apel dengan	
	membayar 55000	
	Intan membeli 2 kg mangga dan 2 kg apel dengan	
	membayar 50000	
	Ditanya :	
	Berapa harga 1 kg mangga dan 2 kg apel?	
	Misalkan:	2
	Harga 1 kg mangga : x	_
	Harga kg apel : y	
	Model matematika nya :	
	x + 3y = 55000	
	2x + 2y = 50000	
	Kalikan persamaan 1 dengan 2 menjadi $2x + 6y =$	5
	110000	3
	Persamaan 2 tetap	
	Eliminasi	

```
2x + 6y = 110000
   2x + 2y = 50000 -
        4y = 60000
         y = 60000/4 = 15000
             Substitusi y = 15000 ke persamaan x +
                 3y = 55000
   x + 3y = 55000
   x + 3(15000) = 55000
   x + 45000 = 55000
   x = 55000 - 45000
   x = 10000
   Harga 1 kg mangga dan 2 kg apel :
   x + 2y = 10000 + 2(15000)
          = 10000 + 30000
          =40000
   Jadi, harga 1 kg mangga dan 2 kg apel adalah 40000
Total skor
                                                       50
```

$$Nilai = \frac{\textit{skor yang diperoleh}}{\textit{total skor}} \times 100\%$$

Lampiran 11

SOAL UJI COBA

Jenjang / Mata Pelajaran : SMP / Matematika

Pokok Bahasan : SPLDV

Kelas / Waktu : VIII / 60 menit

Petunjuk:

- 1. Tulis nama, nomor presensi, dan kelas pada lembar jawaban.
- 2. Bacalah soal dengan baik dan teliti
- 3. Kerjakan semua soal pada lembar jawab yang disediakan
- 4. Berdoalah sebelum memulai mengerjakan tugas

Soal:

1. Apakah persamaan berikut merupakan Sistem Persamaan Linear Dua Variabel? Berikan alasanmu! Serta visualisasikan dengan *wolfram mathematica* pilihan yang kamu anggap benar melalui grafik dan tentukan HP nya berdasarkan grafik tersebut!

a.
$$2x + 5 = 15$$

b. $\begin{cases} 3x + y = 9 \\ x + y = 4 \end{cases}$
c. $3y = 6$

2. Dian membeli beberapa peralatan tulis di toko Pintar. Ia membeli 1 buah buku dan 3 buah pensil dengan harga Rp. 9.000,-. Dua hari kemudian, di toko yang sama Santi membeli buku sebanyak 3 kali lipat dari jumlah buku yang dibeli Dian dan 2 buah pensil dengan harga Rp. 13.000,-.

Nama Pembeli	Barang yang dibeli	Total yang harus
		dibayar
Dian		Rp. 9000
Santi		Rp. 13.000

Berapa total uang yang harus dibayar Dewi jika hanya membeli 1 buah buku dan 1 buah pensil jika membeli ditoko yang sama dengan Dian dan Santi? Tuliskan informasi apa saja yang ada didalam soal, buat model matematika, dan kerjakan dengan runtut serta carilah harga 1 buah buku tulis dan harga 1 buah pensil dengan bantuan *Wolfram Mathematica* dari model matematika yang telah kamu buat!

3. Perhatikan ilustrasi dibawah ini

Bian membeli 4 buku tulis dan 3 pensil di toko "Pandai Menulis" ia harus membayar Rp.15.000 untuk total belanjaannya.

Sumber: google

Setalah digunakan, buku tulis dan pensil yang ia beli sudah habis dan masih membutuhkan buku tulis dan pensil untuk mengerjakan tugas. Dua hari kemudian, Bian membeli lagi 2 buku tulis dan 4 pensil, dan ia harus membayar Rp.10.000. Jika adik Bian ingin membeli sebuah buku tulis dan sebuah pensil, tentukan harga 1 buah buku tulis dan satu buah pensil! (Tuliskan informasi yang ada pada soal dan kerjakan secara runtut)

4. Perhatikan ilustrasi dibawah ini

Di toko buah "Segar" Intan membeli 1 kg mangga dan 3 kg apel dan ia harus membayar Rp. 55.000,00.

Sumber: google

Karena persediaan buah di kulkas Tari juga habis, dua hari setelah Intan membeli buah, Tari juga membeli buah di toko yang sama dengan tempat Intan membeli buah. Tari membeli 2 kg mangga dan 2 kg apel dengan harga Rp. 50.000,00. Jika Andre ingin membeli 1 kg mangga dan 2 kg apel di toko buah yang sama dengan Intan dan Tari, berapa banyak uang yang harus Andre bayarkan? (**Tuliskan informasi yang ada pada soal dan kerjakan secara runtut**)

Lampiran 12 a

ANGKET PENILAIAN E-MODUL BERBANTUAN WOLFRAM MATHEMATICA PADA MATERI SISTEM PERSAMAAN LINEAR DUA VARIABEL

UNTUK AHLI MEDIA

Nama:

Asal Instansi :

Judul : Pengembangan *E-Modul* Berbantuan *Wolfram Mathematica* Untuk Meningkatkan Kemampuan Berpikir Kritis

Penyusun : Grahita Sukma Dewi

Dosen Pembimbing :

- 1. Dr. Nizaruddin, M.Si
- 2. Yanuar Hery Murtianto, S.Pd., M.Pd.

Dengan hormat,

Sehubungan dengan dikembangkannya *e-modul* berbantuan *wolfram mathematica* pada materi Sistem Persamaan Linear Dua Variabel, saya selaku peneliti memohon kesediaann Bapak/Ibu untuk memberikan penilaian *e-modul* yang saya kembangkan. Validasi ini dimaksudkan untuk mengetahui pendapat Bapak/Ibu mengenai *e-modul* yang dikembangkan, sehingga dapat diketahui layak atau tidaknya *e-modul* tersebut untuk digunakan siswa. Penilaian yang Bapak/Ibu berikan akan digunakan sebagai indikator kualitas dan pertimbangan untuk perbaikan *e-modul* tersebut. Atas perhatian dan kesediaan Bapak/Ibu, peneliti ucapkan terima kasih.

Lembar Validasi Ahli Media Pembelajaran Matematika

A. Petunjuk Pengisian

Penilaian ini dilakukan dengan memberi tanda " $\sqrt{}$ " pada kolom yang sesuai dengan penilaian Bapak/Ibu untuk setiap butir dalam lembar penilaian dengan ketentuan sebagai berikut:

Skor 5 : sangat setuju (SS)

Skor 4 : Setuju (S)

Skor 3 : Ragu-Ragu (RG) Skor 2 : Tidak Setuju (TS)

Skor 1 : sangat tidak setuju (STS)

B. Aspek Penilian

No	Aspek	Indikator		Nilai						
			SS	S	RG	TS	STS			
1	Materi/Isi	Kesesuaian materi dengan tujuan pembelajaran								
		2. Kelengkapan materi								
		3. Kejelasan penyampaian materi								
		4. Kesesuaian contoh soal dan latihan soal dengan materi								
		5. Penggunaan ilustrasi masalah yang berkaitan dengan kehidupan sehari-hari								
2	Penyajian	6. Kemudahan dalam penggunaan								

		e-modul
		7. Seluruh teks
		dalam media
		dapat terbaca
		oleh
		pengguna
		8. Kesesuaian
		tata letak
		9. Pemilihan
		background
		yang menarik
		10. Kesesuaian
		bentuk dan
		ukuran huruf
		11. Video
		Youtube Youtube
		dapat dibuka
		dengan mudah
		12. Modul
		berbantuan W. IC
		Wolfram
		Matehmatica
		dapat diakses
		dengan
		mudah
		13. Aplikasi
		dapat
		dioperasikan
		pada semua
		jenis
		smartphone
		dan komputer
		14. Kemenarikan
		keseluruhan
		tampilan
3	Kebahasaan	15. Penggunaan
		kalimat yang
		efektif
		16. Mengunakan

			bahasa yan	g		
			mudah			
			dipahamai			
C.	Komentai	r dan Saran Perbaikan				
		•••••	•••••	•••••	 •	
•••••				•••••	 •	
• • • • • • • • • • • • • • • • • • • •		•••••	•••••	•••••	 •	
• • • • • • • • • • • • • • • • • • • •		•••••	•••••	•••••	 •	
•••••		•••••	•••••	•••••	 •••••	
	Kesimpul					
Bahan		ntuk e-modul ini diny				
	•	digunakan dilapanga	-			
	•	digunakan dilapanga	•			
		layak digunakan di la	pangan			
*) ling	kari salah	satu				
			Semarang,			
			Validator			
			NIP/NPP.			

ANGKET PENILAIAN E-MODUL BERBASIS WOLFRAM MATHEMATICA PADA MATERI SISTEM PERSAMAAN LINEAR DUA VARIABEL

UNTUK AHLI MEDIA

Nama

: Dr. Argo Andri Nugrono. s.s., M. pd

Asal Instansi

: UPGFIS

Judul

: Pengembangan E-Modul Berbantuan Wolfram Mathematica

Untuk Meningkatkan Kemampuan Berpikir Kritis Siswa

Penyusun

: Grahita Sukma Dewi

Dosen Pembimbing :

1. Dr. Nizaruddin, M.Si

2. Yanuar Hery Murtianto, S.Pd., M.Pd.

Dengan hormat,

Schubungan dengan dikembangkannya e-modul berbantuan wolfram mathematica pada materi Sistem Persamaan Linear Dua Variabel, saya selaku peneliti memohon kesediaann Bapak/Ibu untuk memberikan penilaian e-modul yang saya kembangkan. Validasi ini dimaksudkan untuk mengetahui pendapat Bapak/Ibu mengenai e-modul yang dikembangkan, sehingga dapat diketahui layak atau tidaknya e-modul tersebut untuk digunakan siswa. Penilaian yang Bapak/Ibu berikan akan digunakan sebagai indikator kualitas dan pertimbangan untuk perbaikan e-modul tersebut. Atas perhatian dan kesediaan Bapak/Ibu, peneliti ucapkan terima kasih.

Lembar Validasi Ahli Media Pembelajaran Matematika

A. Petunjuk Pengisian

Penilaian ini dilakukan dengan memberi tanda "\" pada kolom yang sesuai dengan penilaian Bapak/Ibu untuk setiap butir dalam lembar penilaian dengan ketentuan sebagai berikut:

Skor 5 : sangat setuju (SS)

Skor 4: Setuju (S)

Skor 3: Ragu-Ragu (RG) Skor 2: Tidak Setuju (TS)

Skor 1 : sangat tidak setuju (STS)

No	ek Penilian Aspek	Indikator			Nila	i	
1	Materi/Isi	1. Kesesuaian materi dengan	SS	S	RG	TS	STS
•	March 131	tujuan pembelajaran		V			
		Kelengkapan materi	V				
		Kejelasan penyampaian materi		V			
		Kesesuaian contoh soal dan Iatihan soal dengan materi		V			
		 Penggunaan ilustrasi masalah yang berkaitan dengan kehidupan sehari- hari 	V				
2	Penyajian	Kemudahan dalam penggunaan e-modul	V				
		 Seluruh teks dalam media dapat terbaca oleh pengguna 	~				
		Kesesuaian tata letak		V			
		Pemilihan background yang menarik		V			
		10. Kesesuaian bentuk dan ukuran huruf		V			
		 Video Youtube dapat dibuka dengan mudah 	V				
		 Modul berbantuan Wolfram Matehmatica dapat diakses dengan mudah 		V			
		 Aplikasi dapat dioperasikan pada semua jenis smartphone dan komputer 		V			
		14. Kemenarikan keseluruhan tampilan		V	1		

3	Kebahasaan	15. Penggunaan kalimat yang efektif	~	
		16. Menguaakan bahasa yang mudah dipahamai	~	
1	Pada Kirdan	in Perbaikan auch Alben Februagian untuk lee 10th dilambahkan rujuan Pambal k dilambahkan habal humu dan ruk hana untuk hal usaan sebakan	(a) (a) (a) (b) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c	
Ba	Layak digunaka Layak digunaka	uk e-modul ini dinyatakan *) : an dilapangan tanpa ada revisi an dilapangan dengan revisi gunakan di lapangan h satu		
	A \$1110 Property of Contraction			

() |

NIP/NPP.

ANGKET PENILAIAN E-MODUL BERBASIS WOLFRAM MATHEMATICA PADA MATERI SISTEM PERSAMAAN LINEAR DUA VARIABEL

UNTUK AHLI MEDIA

Nama

Judul

: Ika Menarianti, S-Kom. M. Kom

Asal Instansi

: Pend. telmologi Informaci FPM(PATI UPGRIS.

: Pengembangan E-Modul Berbantuan Wolfram Mathematica

Untuk Meningkatkan Kemampuan Berpikir Kritis

Penyusun

: Grahita Sukma Dewi

Dosen Pembimbing

1. Dr. Nizaruddin, M.Si

2. Yanuar Hery Murtianto, S.Pd., M.Pd.

Dengan hormat,

Sehubungan dengan dikembangkannya e-modul berbantuan wolfram mathematica pada materi Sistem Persamaan Linear Dua Variabel, saya selaku peneliti memohon kesediaann Bapak/Ibu untuk memberikan penilaian e-modul yang saya kembangkan. Validasi ini dimaksudkan untuk mengetahui pendapat Bapak/Ibu mengenai e-modul yang dikembangkan, sehingga dapat diketahui layak atau tidaknya e-modul tersebut untuk digunakan siswa. Penilaian yang Bapak/Ibu berikan akan digunakan sebagai indikator kualitas dan pertimbangan untuk perbaikan e-modul tersebut. Atas perhatian dan kesediaan Bapak/Ibu, peneliti ucapkan terima kasih.

Jhgb

Lembar Validasi Ahli Media Pembelajaran Matematika

A. Petunjuk Pengisian

Penilaian ini dilakukan dengan memberi tanda "v" pada kolom yang sesuai dengan penilaian Bapak/Ibu untuk setiap butir dalam lembar penilaian dengan ketentuan sebagai berikut:

Skor 5 : sangat setuju (SS)

Skor 4 : Setuju (S) Skor 3 : Ragu-Ragu (RG)

Skor 2 : Tidak Setuju (TS) Skor 1 : sangat tidak setuju (STS)

B. Aspek Penilian

No	Aspek	Indikator			Nila	_	
1	Materi/Isi	Kesesuaian materi dengan tujuan pembelajaran	SS	5/	RG	TS	STS
		Kelengkapan materi		V			
		Kejelasan penyampaian materi		✓			
		Kesesuaian contoh soal dan latihan soal dengan materi		/			
		 Penggunaan ilustrasi masalah yang berkaitan dengan kehidupan sehari- hari 		1			
2	Penyajian	Kemudahan dalam penggunaan e-modul	1				
		Seluruh teks dalam media dapat terbaca oleh pengguna	V				
		8. Kesesuaian tata letak		~	,		
		Pemilihan background yang menarik		1			
		10. Kesesuaian bentuk dan ukuran huruf		1			
		 Video Youtube dapat dibuka dengan mudah 		1			
		12. Modul berbantuan Walfram Matehmatica dapat diakses dengan mudah		V			
		 Aplikasi dapat dioperasikan pada semua jenis smartphone dan komputer 		~			
		14. Kemenarikan keseluruhan tampilan		V			

[Ei]

3	Kebahasaan	15. Penggunaan kalimat yang efektif	1	
		16. Mengunakan bahasa yang mudah dipahamai	V	
Ko	mentar dan Sara			
	. Tampilan menant	media baik, mudah hanga saja membu	di yuu	alian, Konel
****	internet	- ye sharil .		

D. Kesimpulan

Bahan ajar berbentuk e-modul ini dinyatakan *):

Layak digunakan dilapangan tanpa ada revisi Layak digunakan dilapangan dengan revisi


3. Tidak layak digunakan di lapangan

*) lingkari salah satu

Semarang,

138 601 410

Validator

Lampiran 12 b

HASIL PENILAIAN AHLI MEDIA

BUTIR	Pen	ilai	s1	s2	jumlah	V	Kriteria
BUTIK	1	2	81	82	S	V	Killella
1	4	4	3	3	6	0,75	Tinggi
2	5	4	4	3	7	0,875	Sedang
3	4	4	3	3	6	0,75	Sedang
4	4	4	3	3	6	0,75	Sedang
5	5	4	4	3	7	0,875	Sedang
6	5	5	4	4	8	1	Tinggi
7	5	5	4	4	8	1	Tinggi
8	4	4	3	3	6	0,75	Sedang
9	4	4	3	3	6	0,75	Sedang
10	4	4	3	3	6	0,75	Sedang
11	5	4	4	3	7	0,875	Sedang
12	4	4	3	3	6	0,75	Sedang
13	4	4	3	3	6	0,75	Sedang
14	4	4	3	3	6	0,75	Sedang
15	4	4	3	3	6	0,75	Sedang
16	4	4	3	3	6	0,75	Sedang
Jumlah	69	66	53	50	103	0,80469	Sedang
				Re	liabelitas	0,711	Reliabel

Lampiran 13 a

ANGKET PENILAIAN *E-MODUL* BERBANTUAN *WOLFRAM MATHEMATICA* PADA MATERI SISTEM PERSAMAAN LINEAR DUA VARIABEL

UNTUK AHLI MATERI

Nama :

Asal Instansi :

Judul : Pengembangan *E-Modul* Berbantuan *Wolfram Mathematica* Untuk Meningkatkan Kemampuan Berpikir Kritis Siswa

Penyusun : Grahita Sukma Dewi

Dosen Pembimbing :

- 1. Dr. Nizaruddin, M.Si
- 2. Yanuar Hery Murtianto, S.Pd., M.Pd.

Dengan hormat,

Sehubungan dengan dikembangkannya *e-modul* berbantuan *wolfram mathematica* pada materi Sistem Persamaan Linear Dua Variabel, saya selaku peneliti memohon kesediaann Bapak/Ibu untuk memberikan penilaian *e-modul* yang saya kembangkan. Validasi ini dimaksudkan untuk mengetahui pendapat Bapak/Ibu mengenai *e-modul* yang dikembangkan, sehingga dapat diketahui layak atau tidaknya *e-modul* tersebut untuk digunakan siswa. Penilaian yang Bapak/Ibu berikan akan digunakan sebagai indikator kualitas dan pertimbangan untuk perbaikan *e-modul* tersebut. Atas perhatian dan kesediaan Bapak/Ibu, peneliti ucapkan terima kasih.

Lembar Validasi Ahli Media Pembelajaran Matematika

A. Petunjuk Pengisian

Penilaian ini dilakukan dengan memberi tanda " $\sqrt{}$ " pada kolom yang sesuai dengan penilaian Bapak/Ibu untuk setiap butir dalam lembar penilaian dengan ketentuan sebagai berikut:

Skor 5 : sang at setuju (SS)

Skor 4 : Setuju (S)

Skor 3 : Ragu-Ragu (RG) Skor 2 : Tidak Setuju (TS)

Skor 1 : sangat tidak setuju (STS)

B. Aspek Penilian

No	Aspek	Indikator		Nilai					
			SS	S	RG	TS	STS		
1	Materi/Isi	1. Kesesuaian							
		materi							
		dengan KI							
		dan KD							
		2. Kejelasan							
		perumusan							
		tujuan							
		oembelajaran							
		3. Kesesuaian							
		materi							
		dengan							
		indikator							
		4. Kesesuaian							
		materi							
		dengan tujuan							
		pembelajaran							
		5. Kelengkapan							
		materi							
		6. Kesesuaian							
		contoh soal							
		dengan							
		materi							
		7. Penggunaan							

	1	ilustrasi
		masalah yang
		berkaitan
		dengan
		kehidupan
		sehari-hari
		8. Materi yang
		disajikan
		dapat
		meningkatkan
		kemampuan
		berpikir kritis
		siswa
2	Penyajian	9. Kejelasan
		penyampaian
		10. Sistematika
		penyampaian
		materi
		11. Kemudahan
		dalam
		memahami
		kalimat
		12. Ketersediaan
		contoh soal,
		materi, dan
		video
		penejelasan
		13. Keruntutan
		materi
3	Kebahasaan	14. Penggunaan
		kalimat yang
		efektif
		15. Bahasan yang
		digunakan
		komunikatif
		16. Mengunakan
		bahasa yang
		mudah
		dipahamai

C. Komentar dan Saran	Perbaikan
••••••	
D. Kesimpulan	
Bahan ajar berbentuk e-mod	lul ini dinyatakan *) :
4. Layak digunakar	n dilapangan tanpa ada revisi
Layak digunakar	n dilapangan dengan revisi
6. Tidak layak digu	nakan di lapangan
*) lingkari salah satu	
Semarang,	
	Validator
	NIP/NPP.

ANGKET PENILAIAN E-MODUL BERBASIS WOLFR AM MATHEMATICA PADA MATERI SISTEM PERSAMAAN LINEAR DUA VARIABEL

UNTUK AHLI MATERI

Nama : Dr Argo Andr Wogrobu, S.S., M.yd

Asal Instansi : Uporic

Judul : Pengembangan E-Modul Berbantuan Wolfram Mathematica Untuk

Meningkatkan Kemampuan Berpikir Kritis

Penyusun Grahita Sul.ma Dewi

Dosen Pembinbing : 1. Dr. Nizaroddin, M.Si

2. Yanuar Hery Murtianto, S.Pd., M.Pd.

Dengan bormat,

Schubungan dengan dikembangkannya e-modul berbantuan wolfram mathematica pada materi Sistem Persamaan Linear Dua Variabel, saya selaku peneliti memohon kesediaann Bapak Ibu untuk membenkan pendapat Bapak Ibu mengenan e-modul yang dikembangkan, sehingga dapat diketahui layak atau tidaknya e-modul tersebut untuk diganakan saswa. Pendapat Bapak Ibu berikan akan digunakan sebagai indikator kualitas dan pertambangan untuk perbaikan e-modul tersebut. Atas perhatian dan kesediaan Bapak Ibu, peneliti ucapkan terima kasih.

Lembar Validasi Ahli Media Pembelajaran Matematika

A. Petunjuk Pengisian

Penilaian ini dilakukan dengan memberi tanda "v" pada kolom yang sesuai dengan penilaian Bapak/lbu untuk setiap butir dalam lembar penilaian dengan ketentuan sebagai berikut:

Skor 5 ; sang at setuju (SS) Skor 4 : Setuju (S)

Skor 3 : Ragu-Ragu (RG) Skor 2 : Tidak Setuju (TS)

Skor 1 : sangat tidak setuju (STS)

B. Aspek Penilian

No	Aspek	Indikator			Nila	i	
1	Materi/Isi	1. Kesesuaian materi dengan	\$5	5	RG	TS	STS
		KI dan KD	~				
		Kejelasan perumusan tujuan oembelajaran		/			
	4. Kesesuaian materi dengan tujuan pembelajaran 5. Kelengkapan materi 6. Kesesuaian contoh soal dengan materi 7. Penggunaan ilustras masalah yang berkaitar	The second secon		/			
			V				
		1					
				~			
		masalah yang berkaitan dengan kehidupan sehari-		/			
		Materi yang disajikan dapat meningkatkan kemampuan berpikir kritis siswa		V			
2	Penyajian	Kejelasan penyampaian		~			
	1	 Sistematika penyampaian materi 	V				
		 Kemudahan dalam memahami kalimat 		V			
		12 Ketersediaan contoh soal, materi, dan video penejelasan					
		13. Keruntutan materi	1	10	1	-	

3	Kebahasaan	14. Penggunaan kalimat yang efektif	V
		15. Bahasan yang digunakan komunikatif	~
		16. Mengunakan bahasa yang mudah dipahamai	

D. Kesimpulan

Bahan ajar berbentuk e-modul ini dinyatakan *):

- 4. Layak digunakan dilapangan tanpa ada revisi

 Layak digunakan dilapangan dengan revisi

 6. Tidak layak digunakan di lapangan

 *) lingkari salah satu

Semarang, 30 MM 2022 Validator

NIP/NPP.

ANGKET PENILAIAN E-MODUL BERBANTUAN B'OLFRAM MATHEMATICA PADA MATERI SISTEM PERSAMAAN LINEAR DUA VARIABEL

UNTUK AHLI MATERI

Nama TITIK LETYAWATI, S.P.A.

Asal Instansi IMP NEGERI 2 WELERI

Judul Pengembangan E-Modul Berbantuan Wolfram Mathematica Untuk

Meningkatkan Kemampuan Berpikir Kritis Siswa

Penyusun Grahita Sukma Dewi

Dosen Pembimbing

1. Dr. Nizaruddin, M.Si

2. Yanuar Hery Murtianto, S.Pd., M.Pd.

Dengan hormat,

Sehubungan dengan dikembangkannya e-modul berbantuan wolfram mathematica pada maten Sistem Persamaan Linear Dua Variabel, saya selaku peneliti memohon kesediaann Bapak/Ibu untuk memberikan penilaian e-modul yang saya kembangkan Validasi ini dimaksudkan untuk mengetahui pendapat Bapak/Ibu mengenai e-modul yang dikembangkan, sehingga dapat diketahui layak atau tidaknya e-modul tersebut untuk digunakan siswa. Penilaian yang Bapak/Ibu berikan akan digunakan sebagai indikator kualitas dan pertimbangan untuk perbaikan e-modul tersebut. Atas perhatian dan kesediaan Bapak/Ibu, peneliti ucapkan terima kasih.

Lembar Validasi Ahli Media Pembelajaran Matematika

A. Petunjuk Pengisian

Penilaian ini dilakukan dengan memberi tanda "v^b" pada kolom yang sesuai dengan penilaian Bapak/Ibu untuk setiap butir dalam lembar penilaian dengan ketentuan sebagai berikut:

Skor 5 : sang at setuju (SS)

Skor 4 : Setuju (S)

Skor 3 : Ragu-Ragu (RG) Skor 2 : Tidak Setuju (TS)

Skor 1 : sangat tidak setuju (STS)

B. Aspek Penilian

No	Aspek	Indikator			Nila	i	
1	Materi/Isi	Kesesuaian materi dengan KI dan KD	SS ·/	S	RG	TS	STS
		Kejelasan perumusan tujuan oembelajaran		V			
		Kesesuaian materi dengan indikator	/				
		Kesesuaian materi dengan tujuan pembelajaran		/			
		5. Kelengkapan materi	V				
		Kesesuaian contoh soal dengan materi	4.	V			
		Penggunaan ilustrasi masalah yang berkaitan dengan kehidupan sehari- hari		V			
		Materi yang disajikan dapat meningkatkan kemampuan berpikir kritis siswa		V			
2	Penyajian	Kejelasan penyampaian		1	-		

El----

		10. Sistematika penyampaian materi	V			
		11. Kemudahan dalam memahami kalimat	~			
		12. Ketersediaan contoh soal, materi, dan video penejelasan	V			
		13. Keruntutan materi		\vee		
3	Kebahasaan	14. Penggunaan kalimat yang efektif	B.	V		
		15. Bahasan yang digunakan komunikatif	<			
		16. Mengunakan bahasa yang mudah dipahamai	1			

-	Komentar dan Saran Perbaikan
C.	Komenta on
	\$2P-100-100-100-100-100-100-100-100-100-10
D.	Kesimpulan
	Bahan ajar berbentuk e-modul ini dinyatakan *):

Bahan ajar berbentuk e-modul ini dinyatakan):

Layak digunakan dilapangan tanpa ada revisi

Layak digunakan dilapangan dengan revisi

3. Tidak layak digunakan di lapangan

*) lingkari salah satu

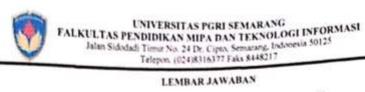
Kendal,

Validato

THIK Setyawah, s.P.

NIP.

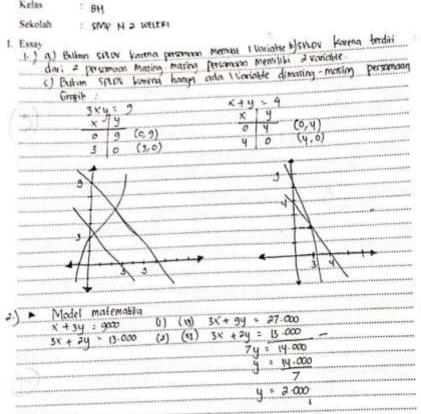
C5 spoke (mgm School


Lampiran 13 b

HASIL PENILAIAN AHLI MATERI

BUTIR	Pen	ilai	s1	s2	jumlah	V	Kriteria
DOTIK	1	2	81	82	S	V	Kincha
1	5	5	4	4	8	1	Tinggi
2	4	4	3	3	6	0,75	Sedang
3	4	5	3	4	7	0,875	Sedang
4	4	4	3	3	6	0,75	Sedang
5	5	5	4	4	8	1	Tinggi
6	4	4	3	3	6	0,75	Sedang
7	4	4	3	3	6	0,75	Sedang
8	4	4	3	3	6	0,75	Sedang
9	4	4	3	3	6	0,75	Sedang
10	5	5	4	4	8	1	Tinggi
11	4	5	3	4	7	0,875	Sedang
12	5	5	4	4	8	1	Tinggi
13	4	4	3	3	6	0,75	Sedang
14	4	4	3	3	6	0,75	Sedang
15	4	5	3	4	7	0,875	Sedang
16	4	5	3	4	7	0,875	Sedang
Jumlah	68	72	52	56	108	0,84375	Sedang
		Relial	oelitas			0,800	Reliabel

<u>ES</u>


SAMPEL JAWABAN UJI COBA

KELAS UJI COBA

Nama : Aditya Huyoto

No. Absen : 2 Kelas : gu

► Subtituritian y: 2000 Ke X+3y = 9.000 X+3 €2.000) = 9.000 X+6000 = 9.000 X = 9.000 ±6.000

x = 3.000

► Jadi hanga (baku : 3.000 hanga (pensil : 2.000

Total yang santi bayar : 3-000+ 2-000 = 5-000.

3.) Misal : hanga 1 buku . y haraja 1 penait : G

Model maternatifica

4a + 3b = 15.000 (x₁)

4a + 3b = 15000

2a + 4b = 10.000 (x₂)

4a + 8b = 20.000

Subtitusition b = 1.000 fee 2a + 4b = 10.000 2a + 4(1.000) = 10.000 2a + (4.000) = 10.000 2a = 10.000 - 4.000 2a = 6.000 a = 6.000 a = 6.000 a = 6.000

jadi harga 1 buku : 3.000 harga 1 pensil : 1.000

31

UNIVERSITAS PGRI SEMARANG FALKULTAS PENDIDIKAN MIPA DAN TEKNOLOGI INFORMASI Jalan Sidodadi Timur No. 24 Dr. Cipto, Semarang, Indonesia 50125 Telepon. (024)8316377 Faks 8448217

1	The second of the control of the con
1	y.) Difetahii
**	Pilds Monkell 1
***	7 La San La Company Co
***	2 24 ape Rp 50 000
***	Utonia: Total yara harut andre bayar?
***	javah :
+++	Misal harga 1kg apel : Y
***	horga (Ky Mangya : Y
***	No. 17
1	► Model Matematika
1.	X + 34 - 55-00 (x ₃) 2x + 64 = 110-000 2x + 24 = 50 00 (x ₁) 2x + 24 = 50 000 -
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	1 2 60 000
	4 > 60 000
	u ~ 15-000-
-	The state of the s
0.0	▲ Subtitusitan y = 15:000 ke
2.0	X + 34 = 55 = 000
	x + 3(15.000) = 55.000 x + (45.000) = 55.000
	X + (45.000) = 25.000
9.00	X = 55-000 - 45-000
0.55	× - 0.000
	Andre membeli kg managa & 2 kg apel
	Andre Membeli I kg mangga & 2 tg quei
	X + 24
100	= 10.000 + 2 CB 000 = 10.000 + 30.000
- 30	5 0.00
	s 40-00b
40	
*	
. **	
++	
**	

Lampiran 15 1

No	Vada		Y	3700			
No	Kode	1	2	3	4	Y	Y^2
1	UC-'10	9	12	12	12	45	2025
2	UC-'22	9	12	12	12	45	2025
3	UC-'2	9	10	10	12	41	1681
4	UC-'11	9	12	8	12	41	1681
5	UC-'5	9	8	12	10	39	1521
6	UC-'12	9	8	12	10	39	1521
7	UC-'14	6	12	9	11	38	1444
8	UC-'25	5	12	9	12	38	1444
9	UC-'27	9	10	5	12	36	1296
10	UC-'9	6	8	9	12	35	1225
11	UC-'13	7	8	7	12	34	1156
12	UC-'18	4	10	9	10	33	1089
13	UC-'6	4	8	9	12	33	1089
14	UC-'15	6	8	7	12	33	1089
15	UC-'19	9	6	6	10	31	961
16	UC-'29	4	8	3	10	25	625
17	UC-'1	6	4	8	6	24	576
18	UC-'7	5	2	8	9	24	576
19	UC-'17	3	2	9	10	24	576
20	UC-'20	5	8	4	6	23	529
21	UC-'26	9	2	4	8	23	529
22	UC-'4	4	2	7	10	23	529
23	UC-'8	2	7	4	10	23	529
24	UC-'16	8	5	3	6	22	484

25	UC-'23	5	5	6	6	22	484
26	UC-'24	2	4	7	8	21	441
27	UC-'28	1	8	2	10	21	441
28	UC-'21	2	4	7	6	19	361
29	UC-'3	2	5	4	6	17	289
	Jumlah	168	210	212	282	872	28216
	r hitung	0,702	0,804	0,745	0,785		
validitas	r tabel	0,367	0,367	0,367	0,367		
	keterangan	VALID	VALID	VALID	VALID		
	σ_i^2	6,991677	10,321	8,00713	4,95838		
	$\sum \sigma_i^2$	30,27824					
Reliabelitas	σ_t^2	68,82283					
	r_{11}	0,580					
	r_{tabel}	0,367					
	keterangan	Reliabel					
Taraf	Rata-Rata	5,793103	7,24138	7,31034	9,72414		
Kesukaran	Indeks kesukaran	0,57931	0,45259	0,6092	0,81034		
Kesukaran	Kriteria	SEDANG	SEDANG	SEDANG	MUDAH		
	Rata-Rata atas	7,214286	9,85714	9,28571	11,5		
	Rata-Rata Bawah	4,142857	4,71429	5,42857	7,92857		
Daya	Skor maks. Tiap butir						
Pembeda	soal	10	16	12	12		
	Daya Pembeda	0,31	0,32	0,32	0,30		
	Kriteria	Baik	Baik	Baik	Baik		

PERHITUNGAN VALIDITAS BUTIR SOAL UJI COBA

(Perhitungan manual)

Untuk menghitung validitas butir soal uraian menggunakan rumus

$$rhitung = \frac{n(\sum XY) - (\sum X) \cdot (\sum Y)}{\sqrt{\left\{n.\sum X^2 - (\sum X)^2\right\} \cdot \left\{n.\sum Y^2 - (\sum Y)^2\right\}}}$$

dengan kriteria $r_{hitung} > r_{tabel}$ maka butir soal valid.

1. Menghitung validitas butir soal No. 1

$$N = 29$$
 $\sum X = 168$
 $\sum Y = 872$ $\sum XY = 7560$
 $\sum X^2 = 1176$ $\sum Y^2 = 28216$

Dari data tersebut disubtitusikan ke rumus product moment :

rhitung =
$$\frac{n(\sum XY) - (\sum X).(\sum Y)}{\sqrt{\{n.\sum X^2 - (\sum X)^2\} \{n.\sum Y^2 - (\sum Y)^2\}}}$$
=
$$\frac{29(7560) - (168)(872)}{\sqrt{(29 \times 1176 - (168)^2).(29 \times 28216 - (872)^2)}}$$
= 0.702

Dari perhitungan diperoleh $r_{hitung} = 0,703$. Sedangkan pada tabel nilai *product moment* dengan N = 29 dan pada taraf signifikansi 5% diperoleh $r_{tabel} = 0,367$. Dengan demikian diperoleh $r_{hitung} > r_{tabel}$ sehingga soal no 1 dikatakan **valid**.

2. Menghitung validitas butir soal No. 2

$$N = 29$$
 $\sum X = 210$
 $\sum Y = 872$ $\sum XY = 9450$
 $\sum X^2 = 1820$ $\sum Y^2 = 28216$

Dari data tersebut disubtitusikan ke rumus product moment :

$$rhitung = \frac{n(\sum XY) - (\sum X).(\sum Y)}{\sqrt{\{n.\sum X^2 - (\sum X)^2\} \{n.\sum Y^2 - (\sum Y)^2\}}}$$
$$= \frac{29(9450) - (210)(872)}{\sqrt{(29 \times 1820 - (210)^2).(29 \times 28216 - (872)^2)}}$$

$$= 0.804$$

Dari perhitungan diperoleh $r_{hitung} = 0,804$. Sedangkan pada tabel nilai *product moment* dengan N = 29 dan pada taraf signifikansi 5% diperoleh $r_{tabel} = 0,367$. Dengan demikian diperoleh $r_{hitung} > r_{tabel}$ sehingga soal no 2 dikatakan **valid**.

3. Menghitung validitas butir soal No. 3

$$N = 29$$
 $\sum X = 212$
 $\sum Y = 872$ $\sum XY = 9540$
 $\sum X^2 = 1782$ $\sum Y^2 = 28216$

Dari data tersebut disubtitusikan ke rumus product moment :

rhitung =
$$\frac{n(\sum XY) - (\sum X) \cdot (\sum Y)}{\sqrt{\{n \cdot \sum X^2 - (\sum X)^2\} \cdot \{n \cdot \sum Y^2 - (\sum Y)^2\}}}$$

$$= \frac{29(9540) - (212)(872)}{\sqrt{(29 \times 1782 - (212)^2) \cdot (29 \times 28216 - (872)^2)}}$$

$$= 0.745$$

Dari perhitungan diperoleh $r_{hitung} = 0,745$. Sedangkan pada tabel nilai *product moment* dengan N = 29 dan pada taraf signifikansi 5% diperoleh $r_{tabel} = 0,367$. Dengan demikian diperoleh $r_{hitung} > r_{tabel}$ sehingga soal no 3 dikatakan **valid**.

4. Menghitung validitas butir soal No. 4

$$N = 29$$
 $\sum X = 282$
 $\sum Y = 872$ $\sum XY = 12690$
 $\sum X^2 = 2886$ $\sum Y^2 = 28216$

Dari data tersebut disubtitusikan ke rumus product moment :

rhitung =
$$\frac{n(\sum XY) - (\sum X).(\sum Y)}{\sqrt{\{n.\sum X^2 - (\sum X)^2\}.\{n.\sum Y^2 - (\sum Y)^2\}}}$$
=
$$\frac{29(12690) - (282)(872)}{\sqrt{(29 \times 2886 - (282)^2).(29 \times 28216 - (872)^2)}}$$
= 0,785

Dari perhitungan diperoleh $r_{hitung} = 0,785$. Sedangkan pada tabel nilai *product moment* dengan N = 29 dan pada taraf signifikansi 5% diperoleh $r_{tabel} = 0,367$. Dengan demikian diperoleh $r_{hitung} > r_{tabel}$ sehingga soal no 4 dikatakan **valid**.

Lampiran 16 b

PERHITUNGAN RELIABILITAS BUTIR SOAL UJI COBA

(Perhitungan manual)

untuk menguji reliabilitas soal uji coba dalam bentuk uraian digunakan rumus alpha sebagai berikut :

$$r_{11} = \left(\frac{n}{n-1}\right) \left(1 - \frac{\sum \sigma_i^2}{\sigma_t^2}\right)$$

Dengan
$$\sigma^2 = \frac{\sum X^2 - \frac{(\sum X)^2}{N}}{N}$$
 atau $\sigma_t = \frac{\sum X_t^2}{N} - \frac{(\sum X_t)^2}{N}$

Setelah diperleh r_{11} kemudian dibandingkan dengan r_{tabel} dengan keriteria $r_{11} > r_{tabel}$, maka instrument tes dikatakan reliabel.

Berdasarkan lampiran diperoleh:

$$N = 29$$

$$\sum X_1 = 168$$
 $\sum X_1^2 = 1176$ $(\sum X_1)^2 = 28224$ $\sum X_2 = 210$ $\sum X_2^2 = 1820$ $(\sum X_2)^2 = 44100$ $\sum X_3 = 212$ $\sum X_3^2 = 1782$ $(\sum X_3)^2 = 44944$ $\sum X_4 = 282$ $\sum X_4^2 = 2886$ $(\sum X_4)^2 = 79524$

Berikut perhitungan mencari varians:

1. Menentukan Varians Tiap Butir Soal

a. Varians Butir Soal No.1

$$\sigma_1^2 = \frac{\sum X_1^2 - \frac{(\sum X_1)^2}{N}}{N} = \frac{1176 - \frac{(168)^2}{29}}{29} = \frac{1176 - \frac{28224}{29}}{29} = \frac{1176 - 973,24}{29}$$
$$= \frac{202,76}{29} = 6,991$$

b. Varians Butir Soal No.2

$$\sigma_1^2 = \frac{\sum X_2^2 - \frac{(\sum X_2)^2}{N}}{N} = \frac{1820 - \frac{(210)^2}{29}}{29} = \frac{1820 - \frac{44100}{29}}{29} = \frac{1820 - 1520,69}{29}$$
$$= \frac{299,41}{29} = 10,321$$

c. Varians Butir Soal No.3

$$\sigma_3^2 = \frac{\sum X_3^2 - \frac{(\sum X_3)^2}{N}}{N} = \frac{1782 - \frac{212^2}{29}}{29} = \frac{1782 - \frac{44944}{29}}{29} = \frac{1782 - 1549,79}{29}$$
$$= \frac{232,21}{29} = 8,007$$

d. Varians Butir Soal No.4

$$\sigma_4^2 = \frac{\sum X_4^2 - \frac{(\sum X_4)^2}{N}}{N} = \frac{2886 - \frac{(282)^2}{29}}{29} = \frac{2886 - \frac{79524}{29}}{29} = \frac{2886 - 2742,21}{29}$$
$$= \frac{143,79}{29} = 4,958$$

2. Menentukan Jumlah Varians Butir Soal

$$\sum \sigma_i^2 = \sigma_1^2 + \sigma_2^2 + \sigma_3^2 + \sigma_4^2$$
= 6,991 + 10,321 + 8,007 + 4,958 = 30,278

3. Menentukan Varians Total

Berdasarkan lampiran 15 diperoleh $\Sigma Y = 872$, $\Sigma Y^2 = 28216$, dan N = 29

$$\sigma_t^2 = \frac{\sum Y^2 - \frac{(\sum Y)^2}{N}}{N} = \frac{28216 - \frac{(872)^2}{29}}{29} = \frac{28216 - \frac{760384}{29}}{29}$$
$$= \frac{28216 - 26220,14}{29} = \frac{1995,86}{29} = 68,8228$$

4. Mencari Reliabilitas Soal

$$r_{11} = \left(\frac{n}{n-1}\right) \left(1 - \frac{\sum \sigma_i^2}{\sigma_t^2}\right)$$

$$= \left(\frac{29}{29-1}\right) \left(1 - \frac{30,278}{68,8228}\right)$$

$$= \left(\frac{29}{28}\right) \left(1 - \frac{30,278}{68,8228}\right)$$

$$= 0,580$$

Dari perhitungan diatas diperoleh $r_{11} = 0,580$. hal ini menunjukkan bahwa $r_{11} > r_{tabel}$ yaitu 0.580 > 0.367 sehingga butir soal dikatakan **reliabel**

Lampiran 16 c

PERHITUNGAN TARAF KESUKARAN BUTIR SOAL UJI COBA

(Perhitungan Manual)

Analisis taraf kesukaran butir soal uji coba dihitung menggunakan rumus:

$$Rata-rata = \frac{\textit{jumlah skor peserta didik tiap butir soal}}{\textit{jumlah skor peserta didik}}$$

$$Tingkat\ kesukaran = \frac{Rata-rata}{Skor\ maksimum\ tiap\ soal}$$

Adapun kriteria taraf kesukaran sebagai berikut :

$$0,00-0,30 = sukar$$

$$0,31-0,70 = sedang$$

$$0,71-1,00 = \text{mudah}$$

1. Menghitung Taraf Kesukaran Butir Soal No.1

$$RRata - rata = \frac{jumlah\ skor\ peserta\ didik\ tiap\ butir\ soal}{jumlah\ skor\ peserta\ didik} = \frac{168}{29} = 5,793$$

$$Tingkat\ kesukaran = \frac{Rata-rata}{Skor\ maksimum\ tiap\ soal} = \frac{5,793}{29} = 0,579$$

Dari perhitungan di atas diperoleh taraf kesukaran sebesar 0,579, berdasarkan kriteria taraf kesukaran butir soal no 2 tergolong dalam soal sedang.

Menghitung Taraf Kesukaran Butir Soal No.2

$$Rata - rata = \frac{jumlah\ skor\ peserta\ didik\ tiap\ butir\ soal}{jumlah\ skor\ peserta\ didik} = \frac{1210}{29} = 7,241$$

$$Tingkat\ kesukaran = \frac{Rata-rata}{Skor\ maksimum\ tiap\ soal} = \frac{7,241}{29} = 0,453$$

Dari perhitungan di atas diperoleh taraf kesukaran sebesar 0,453 , berdasarkan kriteria taraf kesukaran butir soal no 2 tergolong dalam soal sedang.

2. Menghitung Taraf Kesukaran Butir Soal No.3

$$Rata-rata=\frac{\mathit{jumlah\ skor\ peserta\ didik\ tiap\ butir\ soal}}{\mathit{jumlah\ skor\ peserta\ didik}}=\frac{212}{29}=7{,}310$$

$$Tingkat\ kesukaran = \frac{Rata-rata}{Skor\ maksimum\ tiap\ soal} = \frac{7,310}{12} = 0,6092$$

Dari perhitungan di atas diperoleh taraf kesukaran sebesar 0,6092 , berdasarkan kriteria taraf kesukaran butir soal no 3 tergolong dalam soal sedang.

3. Menghitung Taraf Kesukaran Butir Soal No.4

$$Rata - rata = \frac{jumlah \ skor \ peserta \ didik \ tiap \ butir \ soal}{jumlah \ skor \ peserta \ didik} = \frac{282}{29} = 9,724$$

$$Tingkat \ kesukaran = \frac{Rata - rata}{Skor \ maksimum \ tiap \ soal} = \frac{9,724}{29} = 0,81034$$

$$Tingkat\ kesukaran = \frac{Rata-rata}{Skor\ maksimum\ tiap\ soal} = \frac{9,724}{29} = 0,81034$$

Dari perhitungan di atas diperoleh taraf kesukaran sebesar 0,810 , berdasarkan kriteria taraf kesukaran butir soal no 3 tergolong dalam soal mudah.

Lampiran 16 d

PERHITUNGAN DAYA PEMBEDA BUTIR SOAL UJI COBA

(Perhitungan Manual)

Analisis daya pembeda butir soal uji coba dihitung menggunakan rumus:

$$DP = \frac{\bar{X}KA - \bar{X}KB}{skor\ maks}$$

keterangan

DP : Daya Pembeda

 $\bar{X}KA$: Rata-rata kelompok atas

 $\bar{X}KB$: Rata-rata kelompok bawah

skor maks : Skor maksimum

Dengan kriteria sebagai berikut:

0,40 - 1,00 : Sangat baik

0.30 - 0.39 : Baik

0,20 - 0,29: Cukup, soal perlu diperbaiki

0,19 - kebawah: Kurang baik

1. Menghitung Daya Pembeda Butir Soal No.1

 $\bar{X}KA$: 7,214

 $\bar{X}KB$:4,143

skor maks : 10

$$DP = \frac{\bar{X}KA - \bar{X}KB}{skor\ maks} = \frac{3,071}{10} = 0,31$$

Berdasarkan perhitungan diatas diperoleh daya pembeda= 0,31. Maka daya pembeda yang diperoleh dalam kriteria baik

2. Menghitung Daya Pembeda Butir Soal No.2

 $\bar{X}KA$: 9,871

$$\bar{X}KB$$
 : 4,714

$$DP = \frac{\bar{X}KA - \bar{X}KB}{skor\ maks} = \frac{5,157}{16} = 0,32$$

Berdasarkan perhitungan diatas diperoleh daya pembeda= 0,32. Maka daya pembeda yang diperoleh dalam kriteria baik

3. Menghitung Daya Pembeda Butir Soal No.3

 $\bar{X}KA$: 9,286

 $\bar{X}KB$: 5,429

skor maks : 12

$$DP = \frac{\bar{X}KA - \bar{X}KB}{skor\ maks} = \frac{3,857}{12} = 0,32$$

Berdasarkan perhitungan diatas diperoleh daya pembeda = 0,32. Maka daya pembeda yang diperoleh dalam kriteria baik

4. Menghitung Daya Pembeda Butir Soal No.4

 $\bar{X}KA$: 11,5

 $\bar{X}KB$: 7,929

skor maks : 12

$$DP = \frac{\bar{X}KA - \bar{X}KB}{skor\ maks} = \frac{3,571}{12} = 0,30$$

Berdasarkan perhitungan diatas diperoleh daya pembeda = 0,30. Maka daya pembeda yang diperoleh dalam kriteria baik

Lampiran 17 a

UJI NORMALITAS DATA AWAL KELAS EKSPERIMEN (Ms. Exel)

Hipotesis:

 H_0 : Sampel berasal dari populasi berdistribusi normal

 H_1 : Sampel tidak berasal dari populasi berdistribusi normal

Kriteria Pengujian:

 H_0 diterima apabila $L_{\it hittung} \leq L_{\it tabel}$

 $H_{\scriptscriptstyle 0}$ ditolak apabila $L_{\scriptscriptstyle hitung} > L_{\scriptscriptstyle tabel}$

No	Kode	Nilai (X)	X^2	Zi	f(Zi)	S(Zi)	f(Zi) - S(Zi)
1	E1	70	4900	-1,5185	0,0644	0,0333	0,0311
2	E4	70	4900	-1,5185	0,0644	0,0667	0,0022
3	E6	70	4900	-1,5185	0,0644	0,1000	0,0356
4	E7	73	5329	-1,0689	0,1426	0,1333	0,0092
5	E8	73	5329	-1,0689	0,1426	0,1667	0,0241
6	E10	73	5329	-1,0689	0,1426	0,2000	0,0574
7	E12	73	5329	-1,0689	0,1426	0,2333	0,0908
8	E14	75	5625	-0,7692	0,2209	0,2667	0,0458
9	E15	75	5625	-0,7692	0,2209	0,3000	0,0791
10	E16	75	5625	-0,7692	0,2209	0,3333	0,1125
11	E19	75	5625	-0,7692	0,2209	0,3667	0,1458
12	E20	78	6084	-0,3197	0,3746	0,4000	0,0254
13	E21	78	6084	-0,3197	0,3746	0,4333	0,0587
14	E22	78	6084	-0,3197	0,3746	0,4667	0,0921
15	E23	79	6241	-0,1698	0,4326	0,5000	0,0674
16	E2	83	6889	0,4296	0,6662	0,5333	0,1329
17	E11	83	6889	0,4296	0,6662	0,5667	0,0996
18	E25	83	6889	0,4296	0,6662	0,6000	0,0662
19	E3	84	7056	0,5794	0,7188	0,6333	0,0855
20	E5	84	7056	0,5794	0,7188	0,6667	0,0522
21	E28	85	7225	0,7293	0,7671	0,7000	0,0671
22	E9	85	7225	0,7293	0,7671	0,7333	0,0337
23	E24	85	7225	0,7293	0,7671	0,7667	0,0004
24	E13	85	7225	0,7293	0,7671	0,8000	0,0329
25	E17	85	7225	0,7293	0,7671	0,8333	0,0663
26	E18	85	7225	0,7293	0,7671	0,8667	0,0996
27	E27	87	7569	1,0290	0,8483	0,9000	0,0517
28	E26	90	8100	1,4785	0,9304	0,9333	0,0030
29	E29	90	8100	1,4785	0,9304	0,9667	0,0363
30	E30	95	9025	2,2278	0,9871	1,0000	0,0129
Jı	ımlah	2404	193932				
N	Mean	80,13333		-			
	S	6,67333					
L	hitung	0,146					
L	tabel	0.161					

Kesimpulan : terima Ho karena L hitung ≤ L tabel. Jadi data berdistribusi normal

Lampiran 17 b

UJI NORMALITAS DATA AWAL KELAS EKSPERIMEN

(Manual)

1. Menentukan H_0 dan H_1

 H_0 : Sampel pada kelas eksperimen berasal dari populasi berdistribusi normal.

 H_1 : Sampel pada kelas eksperimen tidak berasal dari populasi berdistribusi normal

- 2. Menentukan taraf signifikan, $\alpha = 0.05$
- 3. Statistika uji yang digunakan:

$$L = Maks|F(z_i) - S(z_i)|$$

Dengan:

$$z_i = \frac{x_i - \bar{x}}{s}$$

$$F(z_i) = P(Z \le z); Z \sim N(0,1);$$

 $S(z_i) = proporsi \ cacah \ Z \le z_i \ terhadap \ seluruh \ z$

4. Komputasi

Berdasarkan lampiran 17a diketahui:

$$\sum X = 2404 \text{ dan } \sum X^2 = 193932 \text{ sehingga diperoleh:}$$

$$\bar{X} = \frac{2404}{30} = 80,133$$

$$s = \sqrt{\frac{N\sum X^2 - (\sum X)^2}{n(n-1)}}$$

$$=\sqrt{\frac{(30\times193932-(2404)^2}{30(30-1)}}$$

$$=\sqrt{\frac{5817960-5779216}{30(29)}}$$

$$=\sqrt{\frac{38744}{870}}$$

$$=\sqrt{44,533}=6,673$$

Untuk mencari nilai L_{tabel} lihat tabel pada Lampiran 39

Contoh perhitungan ke-1:

a. Mencari z_i

$$z_i = \frac{x_i - \bar{x}}{s} = \frac{70 - 80,133}{6,673} = -1,5185$$

b. Mencari z_{tabel}

Lihat pada tabel distribusi normal baku nilai dari −1,5185 diperoleh nilai

$$z_{tabel} = 0,4356$$

c. Mencari $F(z_i)$

$$F(z_i) = P(Z \le z)$$

$$F(-1,5185) = P(Z \le -1,5185)$$

$$= 0.5 - 0.4356$$

$$= 0.0644$$

d. Mencari $S(z_i)$

$$S(z_i) = S(-1.5185) = \frac{1}{30} = 0.033$$

e. Mencari
$$|F(z_i) - S(z_i)|$$

$$|F(z_i) - S(z_i)| = |0.0644 - 0.033| = 0.0311$$

f. Menentukan L_{hitung}

Berdasarkan lampiran 17a diperoleh nilai $maks|F(z_i) - S(z_i)| = 0.146$

5. Daerah Kritis

$$L_{tabel} = L_{0,05;30} = 0,161$$

$$DK = \{L_{hitung} | L_{hitung} > 0,161\}; L_{hitung} = 0,146 \notin DK$$

6. Keputusan uji

 H_0 diterima

7. Kesimpulan

Jadi dapet disimpulkan bahwa sampel pada kelas eksperimen berasal dari populasi yang **berdistribusi normal.**

Lampiran 18 a

Uji Normalitas Data Awal Kelas Kontrol VIII F (Dengan Menggunakan Microsoft Excel)

Hipotesis:

 H_0 : Sampel berasal dari populasi berdistribusi normal

 H_1 : Sampel tidak berasal dari populasi berdistribusi normal

Kriteria Pengujian:

 H_{\emptyset} diterima apabila $L_{\mathit{hitung}} \leq L_{\mathit{tabel}}$

 $H_{\scriptscriptstyle 0}$ ditolak apabila $L_{\scriptscriptstyle hittung} > L_{\scriptscriptstyle tabel}$

L tabel

No	Kode	Nilai (X)	X^2	Zi	f(Zi)	S(Zi)	f(Zi) - S(Zi)
1	K1	70	4900	-1,3022	0,0964	0,0357	0,0607
2	K8	70	4900	-1,3022	0,0964	0,0714	0,0250
3	K12	70	4900	-1,3022	0,0964	0,1071	0,0107
4	K17	70	4900	-1,3022	0,0964	0,1429	0,0464
5	K18	70	4900	-1,3022	0,0964	0,1786	0,0822
6	K19	70	4900	-1,3022	0,0964	0,2143	0,1179
7	K21	75	5625	-0,7707	0,2204	0,2500	0,0296
8	K22	75	5625	-0,7707	0,2204	0,2857	0,0653
9	K23	78	6084	-0,4518	0,3257	0,3214	0,0043
10	K24	78	6084	-0,4518	0,3257	0,3571	0,0314
11	K27	78	6084	-0,4518	0,3257	0,3929	0,0671
12	K11	80	6400	-0,2392	0,4055	0,4286	0,0231
13	K15	80	6400	-0,2392	0,4055	0,4643	0,0588
14	K9	80	6400	-0,2392	0,4055	0,5000	0,0945
15	K14	80	6400	-0,2392	0,4055	0,5357	0,1302
16	K16	85	7225	0,2923	0,6150	0,5714	0,0436
17	K25	86	7396	0,3986	0,6549	0,6071	0,0478
18	K26	86	7396	0,3986	0,6549	0,6429	0,0121
19	K28	86	7396	0,3986	0,6549	0,6786	0,0237
20	K13	86	7396	0,3986	0,6549	0,7143	0,0594
21	K20	90	8100	0,8239	0,7950	0,7500	0,0450
22	K4	90	8100	0,8239	0,7950	0,7857	0,0093
23	K2	90	8100	0,8239	0,7950	0,8214	0,0264
24	K3	90	8100	0,8239	0,7950	0,8571	0,0622
25	K5	90	8100	0,8239	0,7950	0,8929	0,0979
26	K6	100	10000	1,8869	0,9704	0,9286	0,0418
27	K7	100	10000	1,8869	0,9704	0,9643	0,0061
28	K10	100	10000	1,8869	0,9704	1,0000	0,0296
J	umlah	2303	191811				
	Mean	82,25					
	S	9,406951724					
L hitung		0,130					

Kesimpulan : terima Ho karena L hitung ≤ L tabel. Jadi data berdistribusi normal

Lampiran 18 b

UJI NORMALITAS DATA AWAL KELAS KONTROL

(Manual)

1. Menentukan H_0 dan H_1

 H_0 : Sampel pada kelas eksperimen berasal dari populasi berdistribusi normal.

 H_1 : Sampel pada kelas eksperimen tidak berasal dari populasi berdistribusi normal

- 2. Menentukan taraf signifikan, $\alpha = 0.05$
- 3. Statistika uji yang digunakan:

$$L = Maks|F(z_i) - S(z_i)|$$

Dengan:

$$z_i = \frac{x_i - \bar{x}}{s}$$

$$F(z_i) = P(Z \le z); Z \sim N(0,1);$$

 $S(z_i) = proporsi \ cacah \ Z \le z_i \ terhadap \ seluruh \ z$

4. Komputasi

Berdasarkan lampiran 17a diketahui:

$$\sum X = 2303 \text{ dan } \sum X^2 = 191811 \text{ sehingga diperoleh:}$$

$$\bar{X} = \frac{2303}{30} = 82,25$$

$$s = \sqrt{\frac{N\sum X^2 - (\sum X)^2}{n(n-1)}}$$

$$=\sqrt{\frac{(28\times191811-(2303)^2}{28(28-1)}}$$

$$=\sqrt{\frac{5370708-5303809}{28(27)}}$$

$$=\sqrt{\frac{66899}{756}}$$

$$=\sqrt{88,49}=9,407$$

Untuk mencari nilai L_{tabel} lihat tabel pada Lampiran 39

Contoh perhitungan ke-1:

a. Mencari z_i

$$z_i = \frac{x_i - \bar{x}}{s} = \frac{70 - 82,25}{9,407} = -1,3022$$

b. Mencari z_{tabel}

Lihat pada tabel distribusi normal baku nilai dari −1,5185 diperoleh nilai

$$z_{tabel} = 0,4036$$

c. Mencari $F(z_i)$

$$F(z_i) = P(Z \le z)$$

$$F(-1,3022) = P(Z \le -1,3022)$$

$$= 0.5 - 0.4036$$

$$= 0.0964$$

d. Mencari $S(z_i)$

$$S(z_i) = S(-1.5185) = \frac{1}{28} = 0.0357$$

e. Mencari
$$|F(z_i) - S(z_i)|$$

$$|F(z_i) - S(z_i)| = |0.0964 - 0.0357| = 0.0607$$

f. Menentukan L_{hitung}

Berdasarkan lampiran 17a diperoleh nilai $maks|F(z_i) - S(z_i)| = 0.130$

5. Daerah Kritis

$$L_{tabel} = L_{0,05;30} = 0,161$$

$$DK = \{L_{hitung} | L_{hitung} > 0,167\}; L_{hitung} = 0,130 \notin DK$$

6. Keputusan uji

 H_0 diterima

7. Kesimpulan

Jadi dapet disimpulkan bahwa sampel pada kelas eksperimen berasal dari populasi yang **berdistribusi normal.**

Lampiran 19 a

UJI HOMOGENITAS DATA AWAL (Ms Excel)

Hipotesis:

H₀: varians pada kelas eskperimen dan kontrol homogen

H₁: varians pada kelas eksperimen dan kontrol tidak homogen

Kriteria Pengujian:

 $H_0\, diterima \; apabila \; b_{hitung} \! \geq b_{tabel} \ H_0\, diterima \; apabila \; b_{hitung} < b_{tabel}$

Tim	Kode	Nilai (X2)	\mathbf{X}^2	Kode	Nilai (X2)	\mathbf{X}^2
1	E-1	70	4900	K-1	70	4900
2	E-2	80	6400	K-2	90	8100
3	E-3	84	7056	K-3	90	8100
4	E-4	70	4900	K-4	90	8100
5	E-5	84	7056	K-5	100	10000
6	E-6	70	4900	K-6	100	10000
7	E-7	70	4900	K-7	70	4900
8	E-8	70	4900	K-8	80	6400
9	E-9	85	7225	K-9	100	10000
10	E-10	70	4900	K-10	80	6400
11	E-11	80	6400	K-11	70	4900
12	E-12	75	5625	K-12	86	7396
13	E-13	85	7225	K-13	80	6400
14	E-14	75	5625	K-14	80	6400
15	E-15	75	5625	K-15	85	7225
16	E-16	75	5625	K-16	70	4900
17	E-17	85	7225	K-17	70	4900
18	E-18	85	7225	K-18	70	4900
19	E-19	75	5625	K-19	90	8100
20	E-20	78	6084	K-20	90	8100
21	E-21	78	6084	K-21	75	5625
22	E-22	78	6084	K-22	75	5625
23	E-23	79	6241	K-23	78	6084
24	E-24	85	7225	K-24	78	6084
25	E-25	82	6724	K-25	86	7396
26	E-26	90	8100	K-26	86	7396
27	E-27	87	7569	K-27	78	6084
28	E-28	85	7225	K-28	86	7396
29	E-29	90	8100			
30	E-30	95	9025			
	Jumlah	2390	191798		2303	191811
	S ²	48,0	920		88,4	907
	S _p ²	67,5	699			
	b hitung	0,9				
	b tabel	0,9				

Kesimpulan : H_0 diterima karena $b_{hitung} \ge b_{tabel}$ dengan $0,955 \ge 0,933$ sehingga varains kedua kelas homogen

Lampiran 19 b

UJI HOMOGENITAS DATA AWAL KELAS EKSPERIMEN DAN KELAS KONTROL

(Perhitungan Manual)

1. Menentukan H_0 dan H_1

 $H_0: \sigma_1^2 = \sigma_2^2$ (varians pada kelas eksperimen dan kontrol homogen)

 $H_1:\sigma_1^2\neq\sigma_2^2$ (varians pada kelas eksperimen dan kontrol tidak homogen)

- 2. Menentukan taraf signifikan, $\alpha = 0.05$
- 3. Statistika uji yang digunakan adalah sebagai berikut:

$$b = \frac{\left[\left(S_1^2 \right)^{n_1 - 1} \left(S_2^2 \right)^{n_2 - 1} ... \left(S_k^2 \right)^{n_k - 1} \right]^{\frac{1}{N - k}}}{S_n^2}$$

4. Komputasi:

Berdasarkan lampiran 19a diperoleh:

$$s_1^2 = \frac{n_1 \sum X_1^2 - (\sum X_1)^2}{n_1 (n_1 - 1)}$$

$$= \frac{(30 \times 191798) - (2390)^2}{30 (30 - 1)}$$

$$= \frac{5753940 - 5712100}{30 (29)}$$

$$= \frac{41840}{870}$$

$$= 48.0920$$

$$s_2^2 = \frac{n_1 \sum X_1^2 - (\sum X_1)^2}{n_1 (n_1 - 1)}$$

$$= \frac{(28 \times 191811) - (2303)^2}{30(30 - 1)}$$

$$= \frac{5370708 - 5303809}{28(27)}$$

$$= \frac{66899}{756}$$

$$= 88,4907$$

Sehingga:

$$s_p^2 = \frac{\sum_{i=1}^k (n_k - 1)s_i^2}{N - k}$$

$$= \frac{(n_1 - 1) \times s_1^2 + (n_2 - 1) \times s_2^2}{(30 + 28) - 2}$$

$$= \frac{(30 - 1) \times 48,0920 + (28 - 1) \times 88,4907}{(30 + 28) - 2}$$

$$= \frac{29 \times 48,0920 + 27 \times 88,4907}{56}$$

$$= \frac{1394,668 + 2389,2489}{56}$$

$$= \frac{3783,9169}{56}$$

$$= 67,5699$$

Kemudian $s_p^{\,2}$ disubtitusikan kedalam uji bartlet sebagai berikut:

$$b = \frac{\left[(s_1^2)^{n_1 - 1} (s_2^2)^{n_2 - 1} ... (s_k^2)^{n_k - 1} \right]^{\frac{1}{N - k}}}{s_p^2}$$

$$= \frac{\left[(48,0920)^{30 - 1} \times (88,4907)^{28 - 1} \right]^{\frac{1}{58 - 2}}}{67,5699}$$

$$= \frac{\left[(201,109)^{29} \times (203,154)^{29} \right]^{\frac{1}{56}}}{67,5699}$$

$$= 0,955$$

5. Daerah kritis

$$b_{tabel} = b_k(\alpha; n_1; n_1) = \frac{(30 \times 0,9348) + (28 \times 0,9301)}{58} = \frac{28,044 + 26,0428}{58} = \frac{54,0868}{58} = 0,933$$

$$Dk = \{b|b < 0.933\}$$

$$b_{hitung} = 0.955 \notin DK$$

6. Kesimpulan uji

 H_0 diterima

- 7. Kesimpulan
- 8. Jadi dapat disimpulkan bahwa varians kelas eksperimen dan kelas kontrol **homogen**.

Lampiran 20 a

Uji T Dua Pihak Data Awal Kelas Eksperimen VIII f dan Kelas Kontrol VIII G (Dengan Menggunakan Microsoft Excel)

Hipotesis:

 H_0 : $\mu_1 = \mu_2$ (rerata hasil belajar kelas eksperimen sama dengan hasil belajar kelas kontrol H_0 : $\mu_1 \neq \mu_2$ (rerata hasil belajar kelas eksperimen sama dengan hasil belajar kelas kontrol Kriteria pengujian :

 H_0 diterima apabila $-t_{(\frac{\alpha}{2},v)} \leq t_{hitung} \leq t_{(\frac{\alpha}{2},v)}$

 H_0 ditolak apabila $t_{hitung} < -t_{(\frac{\alpha}{2}, \nu)}$ atau $t_{hitung} > t_{(\frac{\alpha}{2}, \nu)}$

NO	Kode	$\iota_{ig} < -\iota_{(\frac{\alpha}{2},v)}$ atau Nilai (X1)	X_1^2	Kode	Nilai (X2)	X_2^2
1	E-1	70	4900	K-1	70	4900
2	E-2	80	6400	K-2	90	8100
3	E-3	84	7056	K-3	90	8100
4	E-4	70	4900	K-4	90	8100
5	E-5	84	7056	K-5	100	10000
6	E-6	70	4900	K-6	100	10000
7	E-7	70	4900	K-7	70	4900
8	E-8	70	4900	K-8	80	6400
9	E-9	85	7225	K-9	100	10000
10	E-10	70	4900	K-10	80	6400
11	E-11	80	6400	K-11	70	4900
12	E-12	75	5625	K-12	86	7396
13	E-13	85	7225	K-13	80	6400
14	E-14	75	5625	K-14	80	6400
15	E-15	75	5625	K-15	85	7225
16	E-16	75	5625	K-16	70	4900
17	E-17	85	7225	K-17	70	4900
18	E-18	85	7225	K-18	70	4900
19	E-19	75	5625	K-19	90	8100
20	E-20	78	6084	K-20	90	8100
21	E-21	78	6084	K-21	75	5625
22	E-22	78	6084	K-22	75	5625
23	E-23	79	6241	K-23	78	6084
24	E-24	85	7225	K-24	78	6084
25	E-25	82	6724	K-25	86	7396
26	E-26	90	8100	K-26	86	7396
27	E-27	87	7569	K-27	78	6084
28	E-28	85	7225	K-28	86	7396
29	E-29	90	8100			
30	E-30	95	9025			
	Jumlah	2390	191798		2303	191811
	Mean	79,667	1		82,25	0
	S^2	48,092			88,49	1
	S_p^{-2}	70,009)			
	S _p	8,367				
	d0	0				
	t hitung	-1,175				
	t tabel	2,003	·			

Kesimpulan:

Karena $-t_{(\frac{\alpha}{2},v)} \le t_{hitung} \le t_{(\frac{\alpha}{2},v)}$ maka H0 diterima

Jadi rerata hasil belajar kelas eksperimen sama dengan rerata hasil belajar kelas kontrol

Lampiran 20 b

UJI T DUA PIHAK DATA AWAL

(Perhitungan Manual)

1. Menentukan H_0 dan H_1

 H_0 : Rata-rata nilai peserta didik pada kelas eksperimen sama dengan nilai rata-rata peserta ddik pada kelas kontrol (tidak ada perbedaan).

 H_1 : Rata-rata nilai peserta didik pada kelas eksperimen tidak sama dengan nilai rata-rata peserta didik pada kelas kontrol.

- 2. Menentukan taraf signifikan, $\alpha = 0.05$
- 3. Statistika uji yang digunakan adalah sebagai berikut:

$$t = \frac{\overline{x_1} - \overline{x_2}}{s\sqrt{\frac{1}{n_1} + \frac{1}{n_1}}} dengan s_p^2 = \frac{\sum_{i=1}^k (n_k - 1)s_i^2}{N - k}$$

4. Komputasi:

Berdasarkan lampiran 20a diperoleh:

$$\overline{x_1} = 79,667 \ dan \ \overline{x_2} = 82,25$$

$$s_1^2 = \frac{n_1 \sum x_1^2 - (\sum x_1)^2}{n_1(n_1 - 1)}$$

$$= \frac{(30 \times 191798) - (2390)^2}{30 \times (30 - 1)}$$

$$= \frac{5753940 - 5712100}{30 \times 29}$$

$$= \frac{41840}{870}$$

$$= 48,092$$

$$s_2^2 = \frac{n_1 \sum x_1^2 - (\sum x_1)^2}{n_1 (n_1 - 1)}$$

$$= \frac{(28 \times 191811) - (2303)^2}{28 \times (28 - 1)}$$

$$= \frac{5370708 - 5303809}{28 \times 27}$$

$$=\frac{66899}{756}$$

$$= 88,491$$

Sehingga

$$s_p^2 = \frac{\sum_{i=1}^k (n_k - 1)s_i^2}{N - k}$$

$$=\frac{(n_1-1)s_1^2+(n_2-1)s_2^2}{N-k}$$

$$=\frac{(30-1)\times48,092+(28-1)\times88,491}{(30+28)-2}$$

$$=\frac{29\times48,092+27\times88,491}{58-2}$$

$$=\frac{1418,158+2389,257}{56}$$

$$=\frac{3807,415}{56}$$

$$= 70,009$$

$$s_p = \sqrt{70,009}$$

$$= 8,367$$

$$t_{hitung} = \frac{\overline{x_1} - \overline{x_2}}{s\sqrt{\frac{1}{n_1} + \frac{1}{n_1}}}$$

$$=\frac{79,667-82,259}{8,367\sqrt{\frac{1}{30}+\frac{1}{28}}}$$

$$=\frac{-2,583}{8,367\times\sqrt{0,069}}$$

$$=\frac{-2,583}{8,367\times0,0263}$$

$$=\frac{-2,583}{2,197}$$

$$=-1,175$$

5. Daerah kritis

$$t_{\frac{\alpha}{2},v} = t_{0,025;56} = 2,003; DK = \{t|t < -2,003 \ atau \ t > 2,003\};$$

$$dan\ t_{hitung} = -1,175 \not\in DK$$

6. Keputusan uji

 ${\cal H}_0$ diterima. jadi rata-rata nilai perserta didik kelas eksperimen dan kelas kontrol tidak ada perbedaan.

Lampiran 21

SOAL PRE TEST

Jenjang / Mata Pelajaran : SMP / Matematika

Pokok Bahasan : SPLDV

Kelas / Waktu : VIII / 60 menit

Petunjuk:

- 5. Tulis nama, nomor presensi, dan kelas pada lembar jawaban.
- 6. Bacalah soal dengan baik dan teliti
- 7. Kerjakan semua soal pada lembar jawab yang disediakan
- 8. Berdoalah sebelum memulai mengerjakan tugas

Soal:

5. Apakah persamaan berikut merupakan Sistem Persamaan Linear Dua Variabel? Berikan alasanmu! Serta visualisasikan dengan *wolfram mathematica* pilihan yang kamu anggap benar melalui grafik dan tentukan HP nya berdasarkan grafik tersebut!

d.
$$2x + 5 = 15$$

e. $\begin{cases} 3x + y = 9 \\ x + y = 4 \end{cases}$
f. $2x = 10$

3y = 6

6. Dian membeli beberapa peralatan tulis di toko Pintar. Ia membeli 1 buah buku dan 3 buah pensil dengan harga Rp. 9.000,-. Dua hari kemudian, di toko yang sama Santi membeli buku sebanyak 3 kali lipat dari jumlah buku yang dibeli Dian dan 2 buah pensil dengan harga Rp. 13.000,-.

Nama Pembeli	Barang yang dibeli	Total yang harus
		dibayar
Dian		Rp. 9000
Santi		Rp. 13.000

Berapa total uang yang harus dibayar Dewi jika hanya membeli 1 buah buku dan 1 buah pensil jika membeli ditoko yang sama dengan Dian dan Santi? Tuliskan informasi apa saja yang ada didalam soal, buat model matematika, dan kerjakan dengan runtut serta buatlah grafik untuk menentukan harga 1 buah buku tulis dan harga 1 buah pensil dengan *Wolfram Mathematica* dari model matematika yang telah kamu buat

7. Perhatikan ilustrasi dibawah ini

Bian membeli 4 buku tulis dan 3 pensil di toko "Pandai Menulis" ia harus membayar Rp.15.000 untuk total belanjaannya.

Sumber: google

Setalah digunakan, buku tulis dan pensil yang ia beli sudah habis dan masih membutuhkan buku tulis dan pensil untuk mengerjakan tugas. Dua hari kemudian, Bian membeli lagi 2 buku tulis dan 4 pensil, dan ia harus membayar Rp.10.000. Jika adik Bian ingin membeli sebuah buku tulis dan sebuah pensil, tentukan harga 1 buah buku tulis dan satu buah pensil! (Tuliskan informasi yang ada pada soal dan kerjakan secara runtut)

8. Perhatikan ilustrasi dibawah ini

Di toko buah "Segar" Intan membeli 1 kg mangga dan 3 kg apel dan ia harus membayar Rp. 55.000,00.

Sumber: google

Karena persediaan buah di kulkas Tari juga habis, dua hari setelah Intan membeli buah, Tari juga membeli buah di toko yang sama dengan tempat Intan membeli buah. Tari membeli 2 kg mangga dan 2 kg apel dengan harga Rp. 50.000,00. Jika Andre ingin membeli 1 kg mangga dan 2 kg apel di toko buah yang sama dengan Intan dan Tari, berapa banyak uang yang harus Andre bayarkan? (**Tuliskan informasi yang ada pada soal dan kerjakan secara runtut**)

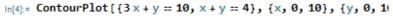
Lampiran 22

KUNCI JAWABANSOAL PRE TEST

Kunci Jawaban

1

d.
$$2x + 5y = 15$$


Bukan merupakan SPLDV, karena hanya terdiri dari satu PLDV, SPLDV terdiri dari dua PLDV

$$e. \begin{cases} 3x + y = 10 \\ x + y = 4 \end{cases}$$

Merupakan SPLD karena terdiri dari dua PLDV dan masingmasing variabelnya berpangkat satu

$$\begin{array}{cc}
2x = 10 \\
3y = 6
\end{array}$$

bukan SPLDV karena masing-masing persamaan hanya memuat satu variabel

$$HP = (3,1)$$

f. Diketahui:

Dian membeli sebuah buku tulis dan 3 buah pensil Santi membeli 3 buah buku tulis dan 2 buah pensil Ditanya:

Berapa total uang yang harus Dewi bayar jika membeli satu bauh buku tulis dan satu buah pensil?

```
g. Misalkan:
Harga satu buah buku tulis : x
Harga satu buah pensil: y
Model matematika nya:
x + 3y = 9000
3x + 2y = 13000
   h. Kalika persamaan 1 dengan 3 menjadi 3x + 9y =
       27000
Persamaan 2 tetap
           > Eliminasi
3x + 9y = 27000
3x + 2y = 13000 -
     7y = 14000
       y = 14000/7 = 2000
           Substitusi y = 2000 ke persamaan x + 3y =
x + 3y = 9000
x + 3(2000) = 9000
x + 6000 = 9000
x = 9000 - 6000
x = 3000
   i. Total yang harus dibayar Dewi:
x + y = 3000 + 2000
      = 5000
Jadi total uang yang harus dibayar Dewi adalah 5000
In[1] =: Solve[{3x + 9y = 27000, 3x + }]
13000, {x,0,5000}, {y,0,5000}]
   j. Out[1] =: \{x \longrightarrow 3000, y \longrightarrow 20000\}
HP (3000,2000)
Jadi harga 1 buah buku = 3000 dan harga 1 buah pensil =
2000
Diketahui:
Andre membeli 4 buah buku tulis dan 3 buah pensil dengan
membayar 15000
Andre membeli 2 buah buku tulis dan 4 buah pensil dengan
membayar 10000
Ditanya:
Berapa harga satu bauh buku tulis dan satu buah pensil?
Misalkan:
Harga satu buah buku tulis : x
Harga satu buah pensil : y
```

Model matematika nya : 4x + 3y = 150002x + 4y = 10000

Persamaan 1 tetap

Kalikan persamaan 2 dengan 2 menjadi 4x + 8y = 20000

➤ Eliminasi

y = -5000/-5 = 1000

4x + 3y = 15000 4x + 8y = 20000 --5y = -5000

Substitusi y = 1000 ke persamaan 2x + 4y = 10000

2x + 4y = 10000

2x + 4(1000) = 10000

2x + 4000 = 10000

2x = 10000 - 4000

2x = 6000

x = 6000/2 = 3000

 $\label{eq:Jadi, Harga satu buah buku: } \textbf{x} = 3000$

Harga satu buah pensil : y = 1000

4 Diketahui:

Sari membeli 1 kg mangga dan 3 kg apel dengan membayar 55000

Intan membeli 2 kg mangga dan 2 kg apel dengan membayar 50000

Ditanya:

Berapa harga 1 kg mangga dan 2 kg apel?

Misalkan:

Harga 1 kg mangga : x

Harga kg apel: y

Model matematika nya:

x + 3y = 55000

2x + 2y = 50000

Kalikan persamaan 1 dengan 2 menjadi 2x + 6y = 110000

Persamaan 2 tetap

> Eliminasi

2x + 6y = 110000

2x + 2y = 50000 -

4y = 60000

y = 60000/4 = 15000

```
Substitusi y = 15000 ke persamaan x + 3y = 55000
x + 3y = 55000
```

$$x + 3(15000) = 55000$$

$$x + 45000 = 55000$$

$$x = 55000 - 45000$$

x = 10000

Harga 1 kg mangga dan 2 kg apel :

$$x + 2y = 10000 + 2(15000)$$

= 10000+30000

= 40000

Jadi, harga 1 kg mangga dan 2 kg apel adalah $40000\,$

Lampiran 23 a

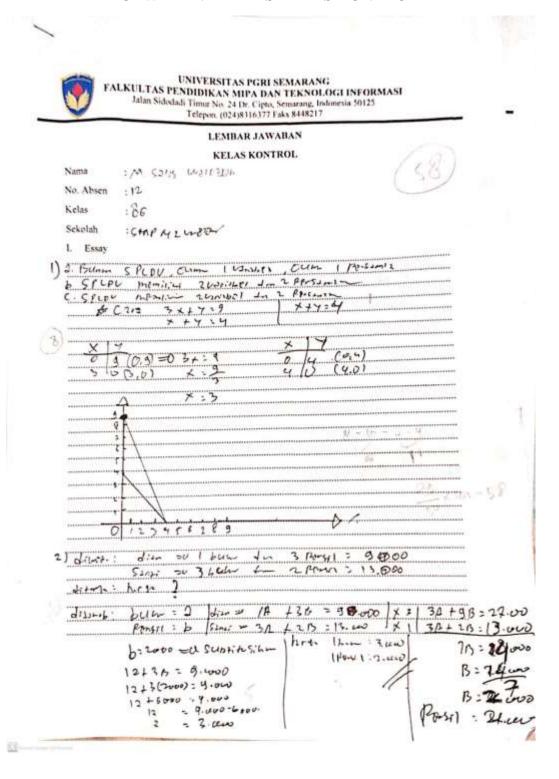
Daftar Nilai Pre Test Kelas Eksperimen VIII F SMP N 2 Weleri

(Kelas Eksperimen)

No	Kode	Nilai
1	E-1	50
2	E-2	72
3	E-3	74
4	E-4	80
5 6	E-5	80
6	E-6	78
7	E-7	56
8	E-8	74
9	E-9	80
10	E-10	78
11	E-11	70
12	E-12	80
13	E-13	78
14	E-14	80
15	E-15	80
16	E-16	70
17	E-17	80
18	E-18	74
19	E-19	60
20	E-20	36
21	E-21	58
22	E-22	52
23	E-23	74
24	E-24	78
25	E-25	76
26	E-26	66
27	E-27	34
28	E-28	88
29	E-29	86
30	E-30	76

JAWABAN PRE TEST KELAS EKSPERIMEN

UNIVERSITAS PGRI SEMARANG FALKULTAS PENDIDIKAN MIPA DAN TEKNOLOGI INFORMASI Jalan Sidodadi Timur No. 24 Dr. Cipto, Semarang, Indonesia 50125 Telepon. (024)8316377 Faks 8448217


		-															
3)	Ditelo	SAM.	подонц		g.co	remorks	******	5701079	*******	********							
	Blan	10.2	mpel	1 4	pulm	do	n 3	PE	old 1	Dehar	95	12:00	0	Such			
	Blur	W	stable?	4	putu	d	ln.	9 8	triid	321	din	10-0	00				
		NOON	4 4	total	U(and t	mat	d	bayo	0	dily.	Diar	1				
********	Jami	P		***************************************							******						
	muse	1:1	utu	Ь					*******		******						
			pentil		********						++++++						
7)	Blan	3	9b	437	7	5.000	"V"	******									
	Sian		26	4 40	********	0.00		*****		*******	*****						
	40 +	30	= 154	*****	Txi	7	4	6 4	35	= (co	Č3			******		
	2 b 4	de.	770	300	Y2	yt		******	Re	= 2	intern	**********					
		*******						21	6.6	-		***				***********	
							********		Jr 60		*****	306	de			*********	
******	**********	0270460							S	ž	,	000					
			******						******		100	Z					
									C		[(0)	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					
				grossee													
C	= 100)]	Jubs Ai	hutcher	. ke												
	91	213	= 3	(500	6												
	9	5 1	30	(00)	> 1	FOOD	ŕ.	7									
	*************	9	3 +	3000	= 1	\$600	-1951614		********	********	*****				*******		
		commin		ah		5000	-30	(0)			******						
*****			******	45	=	120				*******					*		
		******				7				********							
						1200	≥			*******							
		20040040	econos	consume													
				р	Ξ	300	3										
SOI	ketahui	= 1	nian	me	mbeli	1 \$4	mo	reddo	do	m 3	19	cabel	Ra.	F.G. 000	, ton	hombeli	
ab	*********	ng ga	Otto	0 01	a Q	PP	Rp. S	0.00	0 0	andr	n	iledman	11	g m	angga	dan at	9 0
- Care C	anya	40000000	pa b	arunt	Ugn		rat (50	ayar	?			Teamor	energia es		V
********	*****	*******	STATE OF THE PARTY OF	(0)	*******		*****	a	124	*******		110000					
Jac	mp :	STREET,	mano.	minde								2000				**********	
******		ap	CALCULATED	(p)			· · · ·	2.0	1.3	*******	-	and distances					
man	: q	+3P			143				4	b	2	60.00					
0.01	: 20	+ 2	b = 1	ς0@	0 1%	1						6000	,				
10	+ 3 b	- 0	200.2	0			-					4	2001000	1000			
derive.	**********	THE	7.50	ce or	ď)		y	******				12.00	5				
10	AGENT PROPERTY.	*******	*****	assignation.								*********					
	6 6 11 1	4.1.75	- 1-7	للنابء								*********			· · · · · · · · · · · · · · · · · · ·		
Įα	1.70	******				*******	4.6	d.	O Carto	1.1	21.27	the de	LARKS.	OT A THE P	(b) 17	E GCV	
	: 90	000	- 25	200.	5		100	di 1	1040	16	ual	ma ape	*****	adole adole	244400000	000-2 COD-2	3

Lampiran 24 a

Daftar Nilai Pre Test Kelas Kontrol VIII G SMP N 2 Weleri (Kelas Kontrol)

No	Kode	Nilai
1	K-1	70
2	K-2	84
3	K-3	78
4	K-4	84
5	K-5	80
6	K-6	74
7	K-7	82
8	K-8	64
9	K-9	40
10	K-10	82
11	K-11	52
12	K-12	58
13	K-13	74
14	K-14	74
15	K-15	60
16	K-16	84
17	K-17	52
18	K-18	72
19	K-19	74
20	K-20	82
21	K-21	58
22	K-22	84
23	K-23	58
24	K-24	42
25	K-25	68
26	K-26	82
27	K-27	64
28	K-28	84

JAWABAN PRE TES KELAS KONTROL

UNIVERSITAS PGRI SEMARANG FALKULTAS PENDIDIKAN MIPA DAN TEKNOLOGI INFORMASI Jalan Sidodadi Timur No. 24 Dr. Cipto, Semarang, Indonesia 50125 Telepon. (024)8316377 Faks 8448217

Direct: BIAM, et 4 bum + 3 parses	= 15.000. J
Bignz = U 2 bun + 4 Pengi	zu W. our
Detron: Irk Asra Bisa months I be	h h Prest)
Print : - Bun : C 4(1	+3D = 15-000
- Prosil = D - 201	403 Wess
	fr=1= 3,007/00
(32000 dis-6433; m 41	Law,
45 +31 - 15,000	300000
912W7 1 51 - 1000 - 13	My lim Brys 400
34 - 3000	ACCO CONTRACTOR OF THE PARTY OF
3-1000	
	1 3 4 LPM : 18.000
der the bully?	
The state of the s	The state of the s
4 that: 12 + 2 + 5 000	(42) B - 1160
4 that: 12 + 2 + 5 000	CF 2] By -1160
4 that: 12 + 2 + 5 000	(5-21 (3-12-506))
4 that: 12 + 2 + 5 000	(5-21 (3-12-506))
4 that: 12 + 2 + 5 000	(5-21 (3-12-506))
4 that: 12 + 2 + 5 000	(5-21 (3-12-506))
4 that: 12 + 2 + 5 000	(5-21 (3-12-506))
4 that: 12 + 2 + 5 000	C5-21 13 - 10 - 50 (4)
4 that: 12 + 2 + 5 000	C5-21 13 - 10 - 50 (4)
4 that: 12 + 2 + 5 000	C5-21 13 - 10 - 50 (4)

Lampiran 25

SOAL POST TEST

Jenjang / Mata Pelajaran : SMP / Matematika

Pokok Bahasan : SPLDV

Kelas / Waktu : VIII / 60 menit

Petunjuk:

- 9. Tulis nama, nomor presensi, dan kelas pada lembar jawaban.
- 10. Bacalah soal dengan baik dan teliti
- 11. Kerjakan semua soal pada lembar jawab yang disediakan
- 12. Berdoalah sebelum memulai mengerjakan tugas

Soal:

9. Apakah persamaan berikut merupakan Sistem Persamaan Linear Dua Variabel? Berikan alasanmu! Serta visualisasikan dengan *wolfram mathematica* pilihan yang kamu anggap benar melalui grafik dan tentukan HP nya berdasarkan grafik tersebut!

g.
$$2x + 5 = 15$$

h. $\begin{cases} 3x + y = 9 \\ x + y = 4 \end{cases}$
i. $3y = 6$

10. Dian membeli beberapa peralatan tulis di toko Pintar. Ia membeli 1 buah buku dan 3 buah pensil dengan harga Rp. 9.000,-. Dua hari kemudian, di toko yang sama Santi membeli buku sebanyak 3 kali lipat dari jumlah buku yang dibeli Dian dan 2 buah pensil dengan harga Rp. 13.000,-.

Nama Pembeli	Barang yang dibeli	Total yang harus
		dibayar
Dian		Rp. 9000
Santi		Rp. 13.000

Berapa total uang yang harus dibayar Dewi jika hanya membeli 1 buah buku dan 1 buah pensil jika membeli ditoko yang sama dengan Dian dan Santi? Tuliskan informasi apa saja yang ada didalam soal, buat model matematika, dan kerjakan dengan runtut serta buatlah grafik untuk menentukan harga 1 buah buku tulis dan harga 1 buah pensil dengan *Wolfram Mathematica* dari model matematika yang telah kamu buat!

11. Perhatikan ilustrasi dibawah ini

Bian membeli 4 buku tulis dan 3 pensil di toko "Pandai Menulis" ia harus membayar Rp.15.000 untuk total belanjaannya.

Sumber: google

Setalah digunakan, buku tulis dan pensil yang ia beli sudah habis dan masih membutuhkan buku tulis dan pensil untuk mengerjakan tugas. Dua hari kemudian, Bian membeli lagi 2 buku tulis dan 4 pensil, dan ia harus membayar Rp.10.000. Jika adik Bian ingin membeli sebuah buku tulis dan sebuah pensil, tentukan harga 1 buah buku tulis dan satu buah pensil! (**Tuliskan informasi yang ada pada soal dan kerjakan secara runtut**)

12. Perhatikan ilustrasi dibawah ini

Di toko buah "Segar" Intan membeli 1 kg mangga dan 3 kg apel dan ia harus membayar Rp. 55.000,00.

Sumber: google

Karena persediaan buah di kulkas Tari juga habis, dua hari setelah Intan membeli buah, Tari juga membeli buah di toko yang sama dengan tempat Intan membeli buah. Tari membeli 2 kg mangga dan 2 kg apel dengan harga Rp. 50.000,00. Jika Andre ingin membeli 1 kg mangga dan 2 kg apel di toko buah yang sama dengan Intan dan Tari, berapa banyak uang yang harus Andre bayarkan? (**Tuliskan informasi yang ada pada soal dan kerjakan secara runtut**)

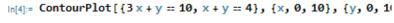
KUNCI JAWABAN SOAL POST TEST

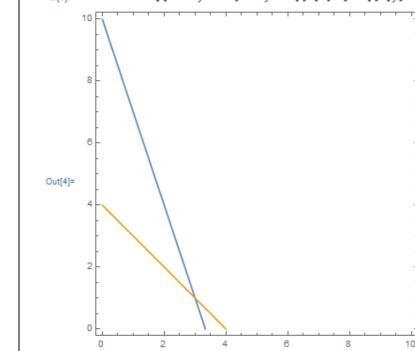
Kunci Jawaban

1

g.
$$2x + 5y = 15$$

Bukan merupakan SPLDV, karena hanya terdiri dari satu PLDV, SPLDV terdiri dari dua PLDV


$$h. \begin{cases} 3x + y = 10 \\ x + y = 4 \end{cases}$$


Merupakan SPLD karena terdiri dari dua PLDV dan masingmasing variabelnya berpangkat satu

$$2x = 10$$

$$3y = 6$$

bukan SPLDV karena masing-masing persamaan hanya memuat satu variabel

$$HP = (3,1)$$

k. Diketahui:

Dian membeli sebuah buku tulis dan 3 buah pensil Santi membeli 3 buah buku tulis dan 2 buah pensil Ditanya:

Berapa total uang yang harus Dewi bayar jika membeli satu bauh buku tulis dan satu buah pensil?

```
Misalkan:
   1.
Harga satu buah buku tulis : x
Harga satu buah pensil: y
Model matematika nya:
x + 3y = 9000
3x + 2y = 13000
   m. Kalika persamaan 1 dengan 3 menjadi 3x + 9y =
       27000
Persamaan 2 tetap
           ➤ Eliminasi
3x + 9y = 27000
3x + 2y = 13000 -
     7y = 14000
       y = 14000/7 = 2000
           Substitusi y = 2000 ke persamaan x + 3y =
x + 3y = 9000
x + 3(2000) = 9000
x + 6000 = 9000
x = 9000 - 6000
x = 3000
   n. Total yang harus dibayar Dewi:
x + y = 3000 + 2000
      = 5000
Jadi total uang yang harus dibayar Dewi adalah 5000
In[1] =: Solve[{3x + 9y = 27000, 3x + }]
13000, {x,0,5000}, {y,0,5000}]
   o. Out[1] =: \{x \longrightarrow 3000, y \longrightarrow 20000\}
HP (3000,2000)
Jadi harga 1 buah buku = 3000 dan harga 1 buah pensil =
2000
Diketahui:
Andre membeli 4 buah buku tulis dan 3 buah pensil dengan
membayar 15000
Andre membeli 2 buah buku tulis dan 4 buah pensil dengan
membayar 10000
Ditanya:
Berapa harga satu bauh buku tulis dan satu buah pensil?
Misalkan:
Harga satu buah buku tulis : x
Harga satu buah pensil : y
```

```
Model matematika nya:
   4x + 3y = 15000
   2x + 4y = 10000
   Persamaan 1 tetap
   Kalikan persamaan 2 dengan 2 menjadi 4x + 8y = 20000
             ➤ Eliminasi
   4x + 3y = 15000
   4x + 8y = 20000 -
        -5y = -5000
         y = -5000/-5 = 1000
              Substitusi y = 1000 ke persamaan 2x + 4y =
                 10000
   2x + 4y = 10000
   2x + 4(1000) = 10000
   2x + 4000 = 10000
   2x = 10000 - 4000
   2x = 6000
           x = 6000/2 = 3000
   Jadi, Harga satu buah buku : x = 3000
   Harga satu buah pensil : y = 1000
4 Diketahui:
   Sari membeli 1 kg mangga dan 3 kg apel dengan membayar
   Intan membeli 2 kg mangga dan 2 kg apel dengan membayar
   50000
   Ditanya:
   Berapa harga 1 kg mangga dan 2 kg apel?
   Misalkan:
   Harga 1 kg mangga : x
   Harga kg apel: y
   Model matematika nya:
   x + 3y = 55000
   2x + 2y = 50000
   Kalikan persamaan 1 dengan 2 menjadi 2x + 6y = 110000
   Persamaan 2 tetap
             > Eliminasi
   2x + 6y = 110000
   2x + 2y = 50000 -
        4y = 60000
```

y = 60000/4 = 15000

```
Substitusi y = 15000 ke persamaan x + 3y = 55000
x + 3y = 55000
```

$$x + 3(15000) = 55000$$

$$x + 45000 = 55000$$

$$x = 55000 - 45000$$

x = 10000

Harga 1 kg mangga dan 2 kg apel :

$$x + 2y = 10000 + 2(15000)$$

= 10000+30000

= 40000

Jadi, harga 1 kg mangga dan 2 kg apel adalah $40000\,$

Lampiran 27 a

Daftar Nilai Post Test Kelas VIII F SMP N 2 Weleri

(Kelas Eksperimen)

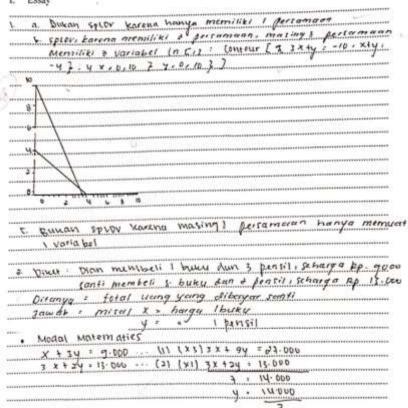
No	Kode	Nilai
1	E-1	74
2	E-2	100
3	E-3	96
4	E-4	100
5	E-5	92
6	E-6	100
7	E-7	74
8	E-8	76
9	E-9	100
10	E-10	96
11	E-11	82
12	E-12	100
13	E-13	100
14	E-14	92
15	E-15	100
16	E-16	82
17	E-17	86
18	E-18	100
19	E-19	80
20	E-20	58
21	E-21	70
22	E-22	86
23	E-23	94
24	E-24	92
25	E-25	80
26	E-26	82
27	E-27	86
28	E-28	96
29	E-29	90
30	E-30	98

JAWABAN POST TEST KELAS EKSPERIMEN

UNIVERSITAS PGRI SEMARANG FALKULTAS PENDIDIKAN MIPA DAN TEKNOLOGI INFORMASI

Jalan Sidodadi Timar No. 24 Dr. Cipto, Semarang, Indonesia 50125 Telepon. (024)8316377 Faks 8448217

LEMBAR JAWABAN


KELAS EKSPERIMEN

: kurnia ksqi imansydh

No. Absen Kelas

Sekolah : SMP N & Weleri

1. Essay

4 = 2-000

UNIVERSITAS PGRI SEMARANG FALKULTAS PENDIDIKAN MIPA DAN TEKNOLOGI INFORMASI Jalan Sidodadi Timur No. 24 Dr. Cipto, Semarang, Indonesia 50125 Telepon. (024)8316377 Faks 8448217

	Sub+1+usikan Y: 2.000 ke xx+ 3y = 9.000	
	X+3 (2.000): 9000	
	X + 600 = 7000	
	x = 9.000 · 6.000	
11	X = 3.00().	
9	Jadi hardupliki + 3.000	
3 8	" \hensil = 2000	bayo
	Ponycietalan dan waiprom	
	[m;] : Into cc x + 3u : q.000 ;x + 2y : 13.000] . 4 x 4 y]	
	Add 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
	[0 W 1] + S[X - 0 3 000 1 7 - 1000 []	
	Journal : Mical 1 buku a	
*	Jawat: Misal 1 buku a	
	1×11 va 1 tb 7 17 000	
	Model Mar 44 1 1 1000 (12) 40 + 86 = 20 000	
	14 + 44 : 10-000 (FZ) 44 + 65 = 5000	
N	000-2 - 1	
6	Subtitusikan b= 1000	
Ξ.	20 + 47 = 10.000 × 1.600	
	24 + 4 (1.000) · 10-000	
	20 + 4.000 = 10.000	
	24 - 10-000 - 4-000	
	≱α . L.000	
	a = 6.000	
	2	
	a = 5-000	
4	Lawas Model morematika: 110-000	
	× + 34 = 55.000 (x 21	
	2x +2y = 10.000 (x1) 2x +2y + 50.000	
装	44 = 60.000	
	4: 60.000	
	A = 12-D00	
	42 15-000 Subfitusikan X + 34.55-000	
	K+ 3 (15-000) SS-000	
	X ► 45.000 - 55-000	
	× * 55 -000 - 45 -000	
	X → 10·000	

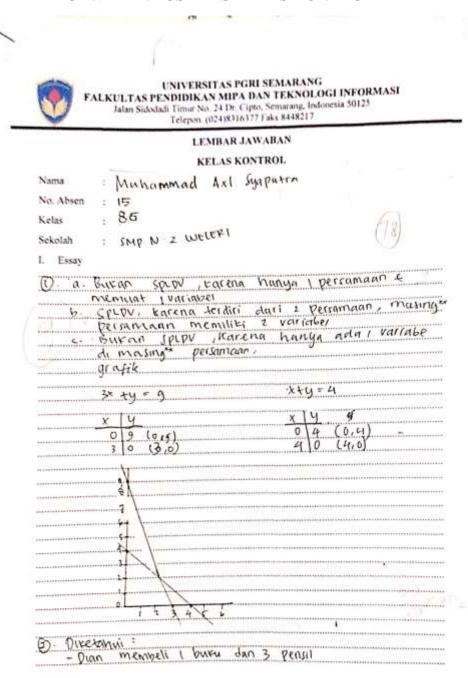
Andre member: 1kg mangga san s eg repel

• X + 24

= 10.000 + 2 (15.00)

= 10.000 1 30.000

= 40.000


Lampiran 28 a

Daftar Nilai Post Test Kelas VIII G SMP N 2 Weleri

(Kelas Kontrol)

No	Kode	Nilai
1	K-1	88
2	K-2	90
2 3 4	K-3	78
4	K-4	76
5 6	K-5	78
6	K-6	88
7	K-7	90
8	K-8	82
9	K-9	86
10	K-10	86
11	K-11	90
12	K-12	60
13	K-13	95
14	K-14	86
15	K-15	78
16	K-16	52
17	K-17	80
18	K-18	80
19	K-19	86
20	K-20	82
21	K-21	86
22	K-22	86
23	K-23	84
24	K-24	95
25	K-25	74
26	K-26	80
27	K-27	96
28	K-28	86

JAWABAN POST TES KELAS KONTROL

9-11-10-9

UNIVERSITAS PGRI SEMARANG FALKULTAS PENDIDIKAN MIPA DAN TEKNOLOGI INFORMASI Jalan Sidodadi Timur No. 24 Dr. Cipto, Semarang, Indonesia 50125 Telepon. (024)8316377 Faks 8448217

Telepoir (024)051051
- santi membeli 3 buku dan 2 Pensil Rp B.000
Outanya: Total wang young aways
hora a I butu
iduab = milai x = icu j
y = harga (pensi)
al actoristics
model matematika (1) [2x] 2x + 94 = 27.000
X + 34 = 9000 12 000
3x + 2y = (3.000(1) [x] 3x + 2y = (3.00)
79 - 17 0
y = 14-000
7
Y = 2-000
Substitusi y = 2000 Ke x + 34 = 9000
x + 3(200) = 9000
x + 600° goo
x = 9000 - 6000
X = 3000
Sadi haran 1 buru = 3000
1 90001 = 1000
@ Musal : haran r buen : 4
V 1300 1 1000 0 1 1 1 1 1 1 1 1 1 1 1 1 1
haga 1 Pensits 8
model materiatica
9a +3b = 15 000 [XI] 455
2a +4b = 10 000 xz 4a + 8b = 20 000
5b = 5000
b = 1000 1000
Culculas 6:10000 8 20 tub. = 10-000
Subgitus 6: 10000 & 20 tub. 10-000
29+4000 = 10-000
29 - 10.000
20 : 10000 - 4000
a * 6000
2
9 = 3000
jadi harga I buku >3000
and the state of t
· · · · · · · · · · · · · · · · · · ·
harga 1 Prints 10000

Lampiran 29 a

UJI NORMALITAS DATA AKHIR KELAS EKSPERIMEN (Ms. Excel)

Hipotesis:

 H_0 : Sampel berasal dari populasi berdistribusi normal

 H_1 : Sampel tidak berasal dari populasi berdistribusi normal

Kriteria Pengujian:

 $H_{\scriptscriptstyle 0}\,$ diterima apabila $L_{\scriptscriptstyle hltung} \leq L_{\scriptscriptstyle tabel}$

 $H_{\scriptscriptstyle 0}$ ditolak apabila $L_{\scriptscriptstyle hitung} > L_{\scriptscriptstyle tabel}$

No	Kode	Nilai (X)	X^2	Zi	f(Zi)	S(Zi)	f(Zi) - S(Zi)
1	E-20	58	3364	-2,7880	0,0027	0,0333	0,0307
2	E-21	70	4900	-1,6994	0,0446	0,0667	0,0220
3	E-1	74	5476	-1,3366	0,0907	0,1000	0,0093
4	E-7	74	5476	-1,3366	0,0907	0,1333	0,0427
5	E-8	76	5776	-1,1551	0,1240	0,1667	0,0426
6	E-19	80	6400	-0,7923	0,2141	0,2000	0,0141
7	E-25	80	6400	-0,7923	0,2141	0,2333	0,0192
8	E-11	82	6724	-0,6108	0,2707	0,2667	0,0040
9	E-16	82	6724	-0,6108	0,2707	0,3000	0,0293
10	E-26	82	6724	-0,6108	0,2707	0,3333	0,0627
11	E-17	86	7396	-0,2480	0,4021	0,3667	0,0354
12	E-22	86	7396	-0,2480	0,4021	0,4000	0,0021
13	E-27	86	7396	-0,2480	0,4021	0,4333	0,0313
14	E-29	90	8100	0,1149	0,5457	0,4667	0,0791
15	E-14	92	8464	0,2963	0,6165	0,5000	0,1165
16	E-24	92	8464	0,2963	0,6165	0,5333	0,0832
17	E-5	92	8464	0,2963	0,6165	0,5667	0,0498
18	E-23	94	8836	0,4778	0,6836	0,6000	0,0836
19	E-10	96	9216	0,6592	0,7451	0,6333	0,1118
20	E-28	96	9216	0,6592	0,7451	0,6667	0,0785
21	E-3	96	9216	0,6592	0,7451	0,7000	0,0451
22	E-30	98	9604	0,8406	0,7997	0,7333	0,0664
23	E-12	100	10000	1,0221	0,8466	0,7667	0,0800
24	E-13	100	10000	1,0221	0,8466	0,8000	0,0466
25	E-15	100	10000	1,0221	0,8466	0,8333	0,0133
26	E-18	100	10000	1,0221	0,8466	0,8667	0,0200
27	E-2	100	10000	1,0221	0,8466	0,9000	0,0534
28	E-4	100	10000	1,0221	0,8466	0,9333	0,0867
29	E-6	100	10000	1,0221	0,8466	0,9667	0,1200
30	E-9	100	10000	1,0221	0,8466	1,0000	0,1534
Jumlah		2662	239732				
M	ean	88,73333		_			
	S	11,02328	1				
Lh	itung	0,153	1				
Lt	abel	0,161					

Kesimpulan : terima Ho karena L hitung ≤ L tabel. Jadi data berdistribusi normal

Lampiran 29 b

UJI NORMALITAS DATA AKHIR KELAS EKSPERIMEN

(Manual)

1. Menentukan H_0 dan H_1

 H_0 : Sampel pada kelas eksperimen berasal dari populasi berdistribusi normal.

 H_1 : Sampel pada kelas eksperimen tidak berasal dari populasi berdistribusi normal

- 2. Menentukan taraf signifikan, $\alpha = 0.05$
- 3. Statistika uji yang digunakan:

$$L = Maks|F(z_i) - S(z_i)|$$

Dengan:

$$z_i = \frac{x_i - \bar{x}}{s}$$

$$F(z_i) = P(Z \le z); Z \sim N(0,1);$$

 $S(z_i) = proporsi \; cacah \; Z \leq z_i \; \text{terhadap seluruh z}$

4. Komputasi

Berdasarkan lampiran 17a diketahui:

$$\sum X = 2662 \text{ dan } \sum X^2 = 239732 \text{ sehingga diperoleh:}$$

$$\bar{X} = \frac{2662}{30} = 88,733$$

$$s = \sqrt{\frac{N\sum X^2 - (\sum X)^2}{n(n-1)}}$$

$$=\sqrt{\frac{(30\times239732-(2662)^2}{30(30-1)}}$$

$$=\sqrt{\frac{7191960-7086244}{30(29)}}$$

$$=\sqrt{\frac{105716}{870}}$$

$$=\sqrt{121,513}=11,0233$$

Untuk mencari nilai L_{tabel} lihat tabel pada Lampiran 39

Contoh perhitungan ke-1:

a. Mencari z_i

$$z_i = \frac{x_i - \bar{x}}{s} = \frac{70 - 88,733}{11,0233} = -27880$$

b. Mencari z_{tabel}

Lihat pada tabel distribusi normal baku nilai dari −2,7880 diperoleh nilai

$$z_{tabel} = 0,4973$$

c. Mencari $F(z_i)$

$$F(z_i) = P(Z \le z)$$

$$F(-2,7880) = P(Z \le -2,7880)$$

$$= 0.5 - 0.4973$$

$$= 0.0027$$

d. Mencari $S(z_i)$

$$S(z_i) = S(-2,7880) = \frac{1}{30} = 0,033$$

e. Mencari
$$|F(z_i) - S(z_i)|$$

$$|F(z_i) - S(z_i)| = |0,0027 - 0,033| = 0,0303$$

f. Menentukan L_{hitung}

Berdasarkan lampiran 17a diperoleh nilai $maks|F(z_i) - S(z_i)| = 0.153$

5. Daerah Kritis

$$L_{tabel} = L_{0,05;30} = 0,161$$

$$DK = \{L_{hitung} | L_{hitung} > 0,161\}; L_{hitung} = 0,153 \notin DK$$

6. Keputusan uji

 H_0 diterima

7. Kesimpulan

Jadi dapet disimpulkan bahwa sampel pada kelas eksperimen berasal dari populasi yang **berdistribusi normal.**

Lampiran 30 a

Uji Normalitas Data Akhir Kelas Kontrol VIII F (Dengan Menggunakan Microsoft Excel)

Hipotesis:

H₀: Sampel berasal dari populasi berdistribusi normal

 H_1 : Sampel tidak berasal dari populasi berdistribusi normal

Kriteria Pengujian:

 $H_{\scriptscriptstyle 0}\,$ diterima apabila $L_{\scriptscriptstyle hitung} \leq L_{\scriptscriptstyle tabel}$

 $H_{\scriptscriptstyle 0}$ ditolak apabila $L_{\scriptscriptstyle httung} > L_{\scriptscriptstyle tabel}$

No	Kode	Nilai (X)	X^2	Zi	f(Zi)	S(Zi)	f(Zi) - S(Zi)
1	K16	52	2704	-3,2380	0,0006	0,0357	0,0351
2	K12	60	3600	-2,3965	0,0083	0,0714	0,0632
3	K25	74	5476	-0,9241	0,1777	0,1071	0,0706
4	K4	76	5776	-0,7137	0,2377	0,1429	0,0948
5	K3	78	6084	-0,5034	0,3074	0,1786	0,1288
6	K5	78	6084	-0,5034	0,3074	0,2143	0,0931
7	K15	78	6084	-0,5034	0,3074	0,2500	0,0574
8	K17	80	6400	-0,2930	0,3848	0,2857	0,0990
9	K18	80	6400	-0,2930	0,3848	0,3214	0,0633
10	K26	80	6400	-0,2930	0,3848	0,3571	0,0276
11	K8	82	6724	-0,0826	0,4671	0,3929	0,0742
12	K20	82	6724	-0,0826	0,4671	0,4286	0,0385
13	K23	84	7056	0,1277	0,5508	0,4643	0,0865
14	K9	86	7396	0,3381	0,6323	0,5000	0,1323
15	K10	86	7396	0,3381	0,6323	0,5357	0,0966
16	K14	86	7396	0,3381	0,6323	0,5714	0,0609
17	K19	86	7396	0,3381	0,6323	0,6071	0,0252
18	K21	86	7396	0,3381	0,6323	0,6429	0,0105
19	K22	86	7396	0,3381	0,6323	0,6786	0,0462
20	K28	86	7396	0,3381	0,6323	0,7143	0,0819
21	K6	88	7744	0,5484	0,7083	0,7500	0,0417
22	K1	88	7744	0,5484	0,7083	0,7857	0,0774
23	K2	90	8100	0,7588	0,7760	0,8214	0,0454
24	K7	90	8100	0,7588	0,7760	0,8571	0,0811
25	K11	90	8100	0,7588	0,7760	0,8929	0,1168
26	K13	95	9025	1,2847	0,9005	0,9286	0,0280
27	K24	95	9025	1,2847	0,9005	0,9643	0,0637
28	K27	96	9216	1,3898	0,9177	1,0000	0,0823
Jun	nlah	2318	194338				
Me	ean	82,78571					
	S	9,507725					
L hitung		0,132					
L ta	abel	0,167					

Kesimpulan : terima Ho karena L hitung \leq L tabel. Jadi data berdistribusi normal

Lampiran 30 b

UJI NORMALITAS DATA AKHIR KELAS KONTROL

(Manual)

1. Menentukan H_0 dan H_1

 H_0 : Sampel pada kelas eksperimen berasal dari populasi berdistribusi normal.

 H_1 : Sampel pada kelas eksperimen tidak berasal dari populasi berdistribusi normal

- 2. Menentukan taraf signifikan, $\alpha = 0.05$
- 3. Statistika uji yang digunakan:

$$L = Maks|F(z_i) - S(z_i)|$$

Dengan:

$$z_i = \frac{x_i - \bar{x}}{s}$$

$$F(z_i) = P(Z \le z); Z \sim N(0,1);$$

 $S(z_i) = proporsi \ cacah \ Z \le z_i \ terhadap \ seluruh \ z$

4. Komputasi

Berdasarkan lampiran 17a diketahui:

$$\sum X = 2318 \text{ dan } \sum X^2 = 194338 \text{ sehingga diperoleh:}$$

$$\bar{X} = \frac{2318}{28} = 82,79$$

$$S = \sqrt{\frac{N\sum X^2 - (\sum X)^2}{n(n-1)}}$$

$$=\sqrt{\frac{(28\times194338-(2318)^2}{28(28-1)}}$$

$$=\sqrt{\frac{5441464-5373124}{28(27)}}$$

$$=\sqrt{\frac{68340}{756}}$$

$$=\sqrt{90,397}=9,5077$$

Untuk mencari nilai L_{tabel} lihat tabel pada Lampiran 39

Contoh perhitungan ke-1:

a. Mencari z_i

$$z_i = \frac{x_i - \bar{x}}{s} = \frac{52 - 82,79}{9,5077} = -3,2380$$

b. Mencari z_{tabel}

Lihat pada tabel distribusi normal baku nilai dari -3,2380 diperoleh nilai

$$z_{tabel} = 0,44994$$

c. Mencari $F(z_i)$

$$F(z_i) = P(Z \le z)$$

$$F(-3,2380) = P(Z \le -3,2380)$$

$$= 0.5 - 0.44994$$

$$= 0.0006$$

d. Mencari $S(z_i)$

$$S(z_i) = S(-3.2380) = \frac{1}{28} = 0.0357$$

e. Mencari
$$|F(z_i) - S(z_i)|$$

$$|F(z_i) - S(z_i)| = |0,0006 - 0,0357| = 0,0351$$

f. Menentukan L_{hitung}

Berdasarkan lampiran 17a diperoleh nilai $maks|F(z_i) - S(z_i)| = 0.132$

5. Daerah Kritis

$$L_{tabel} = L_{0,05;28} = 0,167$$

$$DK = \big\{L_{hitung} \, \big| \, L_{hitung} > 0.167 \big\}; L_{hitung} = 0.132 \not\in DK$$

6. Keputusan uji

 H_0 diterima

7. Kesimpulan

Jadi dapet disimpulkan bahwa sampel pada kelas eksperimen berasal dari populasi yang **berdistribusi normal.**

Lampiran 31 a

Uji Homogenitas Data Akhir Kelas Eksperimen VIII F dan Kelas Kontrol VIII G (Dengan Menggunakan Microsoft Excel)

Hipotesis:

H₀: varians pada kelas eskperimen dan kontrol homogen

H₁: varians pada kelas eksperimen dan kontrol tidak homogen

Kriteria Pengujian:

 H_0 diterima apabila $b_{hitung} \ge b_{tabel}$ H_0 diterima apabila $b_{hitung} < b_{tabel}$

No	Kode	Nilai (X2)	\mathbf{X}^2	Kode	Nilai (X2)	\mathbf{X}^2
1	E-1	74	5476	K1	88	7744
2	E-2	100	10000	K2	90	8100
3	E-3	96	9216	K3	78	6084
4	E-4	100	10000	K4	76	5776
5	E-5	92	8464	K5	78	6084
6	E-6	100	10000	K6	88	7744
7	E-7	74	5476	K7	90	8100
8	E-8	76	5776	K8	82	6724
9	E-9	100	10000	K9	86	7396
10	E-10	96	9216	K10	86	7396
11	E-11	82	6724	K11	90	8100
12	E-12	100	10000	K12	60	3600
13	E-13	100	10000	K13	95	9025
14	E-14	92	8464	K14	86	7396
15	E-15	100	10000	K15	78	6084
16	E-16	82	6724	K16	52	2704
17	E-17	86	7396	K17	80	6400
18	E-18	100	10000	K18	80	6400
19	E-19	80	6400	K19	86	7396
20	E-20	58	3364	K20	82	6724
21	E-21	70	4900	K21	86	7396
22	E-22	86	7396	K22	86	7396
23	E-23	94	8836	K23	84	7056
24	E-24	92	8464	K24	95	9025
25	E-25	80	6400	K25	74	5476
26	E-26	82	6724	K26	80	6400
27	E-27	86	7396	K27	96	9216
28	E-28	96	9216	K28	86	7396
29	E-29	90	8100			
30	E-30	98	9604			
	Jumlah	2662	239732		2318	194338
	S^2	121,			90,39	968
	S_p^{-2}	106,				
	b hitung	0,9				
	b tabel	0,9	33			

Kesimpulan : H_0 diterima karena $b_{hitung}\!\ge b_{tabel}$ dengan 0,989 $\ge 0,933$ sehingga varains kedua kelas homogen

Lampiran 31 b

UJI HOMOGENITAS DATA AKHIR KELAS EKSPERIMEN DAN KELAS KONTROL

(Perhitungan Manual)

1. Menentukan H_0 dan H_1

 $H_0: \sigma_1^2 = \sigma_2^2$ (varians pada kelas eksperimen dan kontrol homogen)

 $H_1:\sigma_1^2\neq\sigma_2^2$ (varians pada kelas eksperimen dan kontrol tidak homogen)

- 2. Menentukan taraf signifikan, $\alpha = 0.05$
- 3. Statistika uji yang digunakan adalah sebagai berikut:

$$b = \frac{\left[\left(S_1^2 \right)^{n_1 - 1} \left(S_2^2 \right)^{n_2 - 1} ... \left(S_k^2 \right)^{n_k - 1} \right]^{\frac{1}{N - k}}}{S_p^2}$$

4. Komputasi:

Berdasarkan lampiran 19a diperoleh:

$$s_1^2 = \frac{n_1 \sum X_1^2 - (\sum X_1)^2}{n_1 (n_1 - 1)}$$

$$= \frac{(30 \times 239732) - (2662)^2}{30(30 - 1)}$$

$$= \frac{7191960 - 7086244}{30(29)}$$

$$= \frac{105716}{870}$$

$$= 121.5126$$

$$s_2^2 = \frac{n_1 \sum X_2^2 - (\sum X_2)^2}{n_2 (n_2 - 1)}$$

$$= \frac{(28 \times 194338) - (2318)^2}{30(30 - 1)}$$

$$= \frac{5441464 - 5373124}{28(27)}$$

$$= \frac{68340}{756}$$

$$= 90,3968$$

Sehingga:

$$s_p^2 = \frac{\sum_{i=1}^k (n_k - 1)s_i^2}{N - k}$$

$$= \frac{(n_1 - 1) \times s_1^2 + (n_2 - 1) \times s_2^2}{(30 + 28) - 2}$$

$$= \frac{(30 - 1) \times 121,5126 + (28 - 1) \times 90,3968}{(30 + 28) - 2}$$

$$= \frac{29 \times 121,5126 + 27 \times 90,3968}{56}$$

$$= \frac{3523,8654 + 2440,7136}{56}$$

$$= \frac{5964,579}{56}$$

$$= 106,5104$$

Kemudian $s_p^{\,2}$ disubtitusikan kedalam uji bartlet sebagai berikut:

$$b = \frac{\left[(S_1^2)^{n_1 - 1} (S_2^2)^{n_2 - 1} ... (S_k^2)^{n_k - 1} \right]^{\frac{1}{N - k}}}{S_p^2}$$

$$= \frac{\left[(121,5126)^{30 - 1} \times (90,3968)^{28 - 1} \right]^{\frac{1}{58 - 2}}}{67,5699}$$

$$= \frac{\left[(201,109)^{29} \times (203,154)^{29} \right]^{\frac{1}{56}}}{106,5104}$$

$$= 0,989$$

5. Daerah kritis

$$b_{tabel} = b_k(\alpha; n_1; n_1) = \frac{(30 \times 0,9348) + (28 \times 0,9301)}{58} = \frac{28,044 + 26,0428}{58} = \frac{54,0868}{58} = 0,933$$

$$Dk = \{b|b < 0.933\}$$

$$b_{hitung} = 0.989 \notin DK$$

6. Kesimpulan uji

 H_0 diterima

7. Kesimpulan

Jadi dapat disimpulkan bahwa varians kelas eksperimen dan kelas kontrol **homogen**.

Lampiran 32 a

UJI KETUNTASAN BELAJAR KLASIKAL KELAS EKSPERIMEN

(Perhitungan Manual)

a. Ketuntasan Belajar Klasikal

Kelas Eksperimen						
No	Kode	Nilai	Kriteria			
1	E-1	74	Tuntas			
2	E-2	100	Tuntas			
3	E-3	96	Tuntas			
4	E-4	100	Tuntas			
5	E-5	92	Tuntas			
6	E-6	100	Tuntas			
7	E-7	74	Tuntas			
8	E-8	76	Tuntas			
9	E-9	100	Tuntas			
10	E-10	96	Tuntas			
11	E-11	82	Tuntas			
12	E-12	100	Tuntas			
13	E-13	100	Tuntas			
14	E-14	92	Tuntas			
15	E-15	100	Tuntas			
16	E-16	82	Tuntas			
17	E-17	86	Tuntas			
18	E-18	100	Tuntas			
19	E-19	80	Tuntas			
20	E-20	58	Belum Tuntas			
21	E-21	70	Tuntas			
22	E-22	86	Tuntas			
23	E-23	94	Tuntas			
24	E-24	92	Tuntas			
25	E-25	80	Tuntas			
26	E-26	82	Tuntas			
27	E-27	86	Tuntas			
28	E-28	96	Tuntas			
29	E-29	90	Tuntas			
30	E-30	98	Tuntas			
J	umlah	2662				
Jun	nlah Siswa	yang Tuntas	29			
	Ketuntasar	Klasikal	97%			

Perhitungan Ketuntasan belajar klasikal:

$$KBK = \frac{jumlah \, siswa \, yang \, tuntas}{jumlah \, seluruh \, siswa} \times 100\%$$

$$=\frac{29}{30}\times 100\% = 97\%$$

Berdasarkan perhitungan diatas diperoleh ketuntasan belajar siswa kelas eksperimen adalah 97%.

b. Ketuntasan Belajar dengan Uji t Pihak Kiri

Untuk menguatkan perhitungan ketuntasan belajar klasikal dilakukan uji t pihak kiri. Adapun langkah-langkahnya sebagai berikut:

1. Menentukan H_0 dan H_1

 H_0 : $\mu \ge 85\%$ (proporsi ketuntasan hasil belajar siswa tercapai)

 $H_1: \mu \leq 85\%$ (proporsi ketuntasan hasil belajar siswa tidak tercapai)

- 2. Menentukan taraf signifikan, $\alpha = 0.05$
- 3. Statistika uji yang digunakan adalah sebagai berikut:

$$t = \frac{\bar{x} - \mu}{s / \sqrt{n}} \sim t(n - 1)$$

4. Komputasi

$$\bar{x} = \frac{\sum x}{n} = \frac{2662}{30} = 88,733$$

$$s^2 = \frac{n\sum x^2 - (\sum x)^2}{n(n-1)}$$

$$=\frac{(30\times239732)-(2662)^2}{30(30-1)}$$

$$=\frac{7191960-7086244}{30(29)}$$

$$=\frac{105716}{870}$$

$$= 121,513$$

$$s = \sqrt{s^2} = \sqrt{121,513} = 11,023$$

$$t = \frac{\bar{x} - \mu}{s / \sqrt{n}}$$

$$= \frac{88,733 - 70}{11,023 / \sqrt{30}}$$

$$= \frac{18,733}{11,023 / 5,477}$$

$$= 9,3082$$

5. Daerah kritis

$$\begin{split} DK &= \left\{ t \middle| t_{hitung} < t_{tabel} \right\} \\ t_{0,05;30} &= 1,699; DK = \left\{ t \middle| t_{hitung} < 1,699 \right\} \\ t_{hitung} &= 9,3082 \notin DK \end{split}$$

6. Keputusan uji

 H_0 diiterima

7. Kesimpulan

Berdasarkan perhitungan di atas dapat disimpulkan bahwa proporsi ketuntasan hasil belajar siswa tercapai.

Lampiran 32 b

UJI KETUNTASAN BELAJAR KLASIKAL KELAS EKSPERIMEN (Perhitungan Ms. Excel)

Hipotesis:

 $H_0: \mu \ge 75\%$ (proporsi ketuntasan hasil belajar siswa tercapai)

 H_0 : μ < 75% (proporsi ketuntasan hasil belajar siswa tercapai)

Kriteria pengujian:

 H_0 diterima apabila $t_{hitung} \geq t_{(\alpha,v)}$

 H_0 ditolak apabila $t_{hitung} < t_{(\alpha,\nu)}$ atau $t_{hitung} > t_{(\frac{\alpha}{2},\nu)}$

No	Kode	Nilai (X)	\mathbf{X}^2		
1	E-1	74	5476		
2	E-2	100	10000		
3	E-3	96	9216		
4	E-4	100	10000		
5	E-5	92	8464		
6	E-6	100	10000		
7	E-7	74	5476		
8	E-8	76	5776		
9	E-9	100	10000		
10	E-10	96	9216		
11	E-11	82	6724		
12	E-12	100	10000		
13	E-13	100	10000		
14	E-14	92	8464		
15	E-15	100	10000		
16	E-16	82	6724		
17	E-17	86	7396		
18	E-18	100	10000		
19	E-19	80	6400		
20	E-20	58	3364		
21	E-21	70	4900		
22	E-22	86	7396		
23	E-23	94	8836		
24	E-24	92	8464		
25	E-25	80	6400		
26	E-26	82	6724		
27	E-27	86	7396		
28	E-28	96	9216		
29	E-29	90	8100		
30	E-30	98	9604		
Jumlah		2662	239732		
Mean			88,73333333		
S^2		121,5126437			
S		11,02327736			
t hitung		9,308183866			
t tabel			1,697		

Kesimpulan : $t_{hitung} \ge t_{(\alpha,v)}$ yaitu 9,308 \ge 1,67 sehingga H0 diterim

Lampiran 33 a

UJI KETUNTASAN BELAJAR KLASIKAL KELAS KONTROL

(Perhitungan Manual)

a. Ketuntasan Belajar Klasikal

Kelas Eksperimen						
No	Kode	Nilai	Kriteria			
1	K1	88	Tuntas			
2	K2	90	Tuntas			
3	K3	78	Tuntas			
4	K4	76	Tuntas			
5	K5	78	Tuntas			
6	K6	88	Tuntas			
7	K7	90	Tuntas			
8	K8	82	Tuntas			
9	K9	86	Tuntas			
10	K10	86	Tuntas			
11	K11	90	Tuntas			
12	K12	60	Belum Tuntas			
13	K13	95	Tuntas			
14	K14	86	Tuntas			
15	K15	78	Tuntas			
16	K16	52	Belum Tuntas			
17	K17	80	Tuntas			
18	K18	80	Tuntas			
19	K19	86	Tuntas			
20	K20	82	Tuntas			
21	K21	86	Tuntas			
22	K22	86	Tuntas			
23	K23	84	Tuntas			
24	K24	95	Tuntas			
25	K25	74	Tuntas			
26	K26	80	Tuntas			
27	K27	96	Tuntas			
28	K28	86	Tuntas			
J	umlah	2318				
Jun	nlah Siswa	yang Tuntas	26			
	Ketuntasar	Klasikal	93%			

Perhitungan Ketuntasan belajar klasikal:

$$\mathit{KBK} = \frac{\mathit{jumlah\,siswa\,yang\,tuntas}}{\mathit{jumlah\,seluruh\,siswa}} \times 100\%$$

$$=\frac{26}{28}\times 100\% = 93\%$$

Berdasarkan perhitungan diatas diperoleh ketuntasan belajar siswa kelas eksperimen adalah 97%.

b. Ketuntasan Belajar dengan Uji t Pihak Kiri

Untuk menguatkan perhitungan ketuntasan belajar klasikal dilakukan uji t pihak kiri. Adapun langkah-langkahnya sebagai berikut:

8. Menentukan H_0 dan H_1

 H_0 : $\mu \geq 75\%$ (proporsi ketuntasan hasil belajar siswa tercapai)

 $H_1: \mu \leq 75\%$ (proporsi ketuntasan hasil belajar siswa tidak tercapai)

- 9. Menentukan taraf signifikan, $\alpha = 0.05$
- 10. Statistika uji yang digunakan adalah sebagai berikut:

$$t = \frac{\bar{x} - \mu}{s / \sqrt{n}} \sim t(n - 1)$$

11. Komputasi

$$\bar{x} = \frac{\sum x}{n} = \frac{2318}{28} = 82,786$$

$$s^2 = \frac{n\sum x^2 - (\sum x)^2}{n(n-1)}$$

$$=\frac{(28\times194338)-(2318)^2}{28(28-1)}$$

$$=\frac{5441464-5373124}{28(27)}$$

$$=\frac{68340}{756}$$

$$= 90.397$$

$$s = \sqrt{s^2} = \sqrt{90,397} = 9,508$$

$$t = \frac{\bar{x} - \mu}{s / \sqrt{n}}$$

$$=\frac{82,786 -70}{9,508/\sqrt{28}}$$

$$=\frac{12,786}{9,508/5,292}$$

12. Daerah kritis

$$DK = \{t | t_{hitung} < t_{tabel} \}$$

 $t_{0,05;28} = 1,701; DK = \{t | t_{hitung} < 1,701 \}$
 $t_{hitung} = 8,229 \notin DK$

13. Keputusan uji

 H_0 diiterima

14. Kesimpulan

Berdasarkan perhitungan di atas dapat disimpulkan bahwa proporsi ketuntasan hasil belajar siswa tercapai.

Lampiran 33 b

UJI KETUNTASAN BELAJAR KLASIKAL KELAS KONTROL (Perhitungan Ms. Excel)

Hipotesis:

 $H_0: \mu \ge 75\%$ (proporsi ketuntasan hasil belajar siswa tercapai)

 H_0 : μ < 75% (proporsi ketuntasan hasil belajar siswa tercapai)

Kriteria pengujian:

 H_0 diterima apabila $t_{hitung} \geq t_{(\alpha,v)}$

 H_0 ditolak apabila $t_{hitung} > t_{(\alpha,v)}$

Kode	Nilai (X)	X^2	
K1	88	7744	
K2	90	8100	
K3	78	6084	
K4	76	5776	
K5	78	6084	
K6	88	7744	
K7	90	8100	
K8	82	6724	
K9	86	7396	
K10	86	7396	
K11	90	8100	
K12	60	3600	
K13	95	9025	
K14	86	7396	
		6084	
K16		2704	
K17	80	6400	
		6400	
	86	7396	
	82	6724	
		7396	
		7396	
		7056	
		9025	
		5476	
		6400	
		9216	
K28		7396	
	2318	194338	
Mean S ²		82,786	
	90,397		
	9,508		
	8,229		
	1,701		
	K1 K2 K3 K4 K5 K6 K7 K8 K9 K10 K11 K12 K13 K14 K15	K1 88 K2 90 K3 78 K4 76 K5 78 K6 88 K7 90 K8 82 K9 86 K10 86 K11 90 K12 60 K13 95 K14 86 K15 78 K16 52 K17 80 K18 80 K19 86 K20 82 K21 86 K22 86 K23 84 K24 95 K25 74 K26 80 K27 96 K28 86 2318	

Kesimpulan : $t_{hitung} \ge t_{(\alpha,\nu)}$ yaitu $8,229 \ge 1,67$ sehingga H0 diterim

Lampiran 34 a

UJI T SATU PIHAK KANAN DATA AKHIR

KELAS EKSPERIMEN DAN KELAS KONTROL

(Ms. Excel)

Hipotesis:

 H_0 : $\mu_1 \le \mu_2$ (rerata hasil belajar kelas eksperimen tidak lebih baik atau sama dengan hasil) belajar kelas kontrol

 H_0 : $\mu_1 > \mu_2$ (rerata hasil belajar kelas eksperimen lebih baik dari hasil belajar kelas kontrol)

Kriteria pengujian:

 H_0 diterima apabila $t_{hitung} \leq t_{(\alpha,v)}$

 H_0 ditolak apabila $t_{hitung} > t_{(\alpha,v)}$

No	Kode	Nilai	X_1^2	Kode	Nilai	V 2
1	F 1	(X1)		17.1	(X2)	X_2^2
1	E-1	74	5476	K1	88	7744
2	E-2	100	10000	K2	90	8100
3	E-3	96	9216	K3	78	6084
4	E-4	100	10000	K4	76	5776
5	E-5	92	8464	K5	78	6084
6	E-6	100	10000	K6	88	7744
7	E-7	74	5476	K7	90	8100
8	E-8	76	5776	K8	82	6724
9	E-9	100	10000	K9	86	7396
10	E-10	96	9216	K10	86	7396
11	E-11	82	6724	K11	90	8100
12	E-12	100	10000	K12	60	3600
13	E-13	100	10000	K13	95	9025
14	E-14	92	8464	K14	86	7396
15	E-15	100	10000	K15	78	6084
16	E-16	82	6724	K16	52	2704
17	E-17	86	7396	K17	80	6400
18	E-18	100	10000	K18	80	6400
19	E-19	80	6400	K19	86	7396
20	E-20	58	3364	K20	82	6724
21	E-21	70	4900	K21	86	7396
22	E-22	86	7396	K22	86	7396
23	E-23	94	8836	K23	84	7056
24	E-24	92	8464	K24	95	9025
25	E-25	80	6400	K25	74	5476
26	E-26	82	6724	K26	80	6400
27	E-27	86	7396	K27	96	9216
28	E-28	96	9216	K28	86	7396
29	E-29	90	8100			-
30	E-30	98	9604			
	mlah	2662	239732		2318	194338
	lean	88,			82,	

S^2	121,513	90,397
S_P^{-2}	106,510	
S_p	10,320	
d0	0,000	
$t_{ m hitung}$	2,193	
t_{tabel}	1,673	

Kesimpulan : karena $t_{hitung} > t_{tabel}$ yaitu 2,193 > 1,673 maka H0 ditolak. Sehingga rerata hasil belajar kelas eksperimen lebih baik dari hasil belajar kelas kontrol

Lampiran 34 b

UJI T SATU PIHAK KANAN DATA AKHIR

KELAS EKSPERIMEN DAN KELAS KONTROL

(Perhitungan Manual)

1. Menentukan H_0 dan H_1

 $H_0: \mu_1 \le \mu_2$ (rerata hasil belajar kelas eksperimen tidak lebih baik atau sama dengan rerata hasil belajar kelas kontrol).

 H_1 : $\mu_1 > \mu_2$ (rerata hasil belajar kelas eksperimen lebih baik dari rerata hasil velajar kelas kontrol).

- 2. Menentukan taraf signifikan, $\alpha = 0.05$
- 3. Statistika uji yang digunakan adalah sebagai berikut:

$$t = \frac{\overline{x_1} - \overline{x_2}}{n_p \sqrt{\frac{1}{n_1} + \frac{1}{n_1}}} dengan \, s_p^2 = \frac{\sum_{i=1}^k (n_k - 1) \, s_i^2}{N - k}$$

4. Komputasi:

Berdasarkan lampiran 34a diperoleh:

$$\overline{x_1} = 88,733 \ dan \ \overline{x_2} = 82,786$$

$$s_1^2 = \frac{n_1 \sum X_1^2 - (\sum X_1)^2}{n_1(n_1 - 1)}$$

$$=\frac{(30\times239732)-(2662)^2}{30(30-1)}$$

$$=\frac{7191960-7086244}{30(29)}$$

$$=\frac{105716}{870}$$

$$= 121,512$$

$$s_2^2 = \frac{n_1 \sum X_1^2 - (\sum X_1)^2}{n_1 (n_1 - 1)}$$
$$= \frac{(28 \times 194338) - (2318)^2}{28(28 - 1)}$$

$$=\frac{\frac{5441464-5373124}{28(27)}}{\frac{68340}{756}}$$

$$= 90,397$$

Sehingga

$$s_p^2 = \frac{\sum_{i=1}^k (n_k - 1)s_i^2}{N - k}$$

$$= \frac{(n_1 - 1) \times s_1^2 + (n_2 - 1) \times s_2^2}{(30 + 28) - 2}$$

$$= \frac{(30 - 1) \times 121,513 + (28 - 1) \times 90,397}{(30 + 28) - 2}$$

$$= \frac{29 \times 121,513 + 27 \times 90,397}{56}$$

$$= \frac{3523,877 + 2440,719}{56}$$

$$= \frac{5964,596}{56}$$

$$= 106,511$$

$$s_p = \sqrt{106,511}$$

$$t_{hitung} = \frac{\overline{x_1} - \overline{x_2}}{s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_1}}}$$

$$=\frac{88,733-82,786}{10,320\sqrt{\frac{1}{30}+\frac{1}{28}}}$$

$$=\frac{5,947}{10,320\times\sqrt{0,069}}$$

$$=\frac{5,947}{10,320\times0,2628}$$

$$=\frac{5,947}{2,712}$$

$$= 2,193$$

5. Daerah kritis

$$t_{\alpha,v} = t_{0,05;58} = 1,673; DK = \{t|t > 1,673\};$$

 $dan\;t_{hitung}=2,193\in DK$

6. Keputusan uji

 ${\cal H}_0$ ditolak. jadi rerata hasil belajar kelas eksperimen lebih baik dari rerata hasil belajar kelas kontrol.

Lampiran 35 a

UJI N GAIN KESELURUHAN

KELAS EKSPERIMEN

No	Kode		Post	N Gain	N Gain
	Rode	Pre Test	Test	Skor	Persen
1	E-1	50	74	0,48	48%
2	E-2	72	100	1,00	100%
3	E-3	74	96	0,85	85%
4	E-4	80	100	1,00	100%
5	E-5	80	92	0,60	60%
6	E-6	78	100	1,00	100%
7	E-7	56	74	0,41	41%
8	E-8	74	76	0,08	8%
9	E-9	80	100	1,00	100%
10	E-10	78	96	0,82	82%
11	E-11	70	82	0,40	40%
12	E-12	80	100	1,00	100%
13	E-13	78	100	1,00	100%
14	E-14	80	92	0,60	60%
15	E-15	80	100	1,00	100%
16	E-16	70	82	0,40	40%
17	E-17	80	86	0,30	30%
18	E-18	74	100	1,00	100%
19	E-19	60	80	0,50	50%
20	E-20	36	58	0,34	34%
21	E-21	58	70	0,29	29%
22	E-22	52	86	0,71	71%
23	E-23	74	94	0,77	77%
24	E-24	78	92	0,64	64%
25	E-25	76	80	0,17	17%
26	E-26	66	82	0,47	47%
27	E-27	34	86	0,79	79%
28	E-28	88	96	0,67	67%
29	E-29	86	90	0,29	29%
30	E-30	76	98	0,92	92%
1.	Rata	-rata		0,65	65%

Contoh perhitungan manual uji n gain nomor 1:

$$(g) = \frac{\text{skor posttest-skor pretest}}{\text{skor ideal-skor pretest}}$$

$$=\frac{100-50}{24}$$

$$=\frac{24}{50}=0,48$$

Lampiran 35 b

UJI N GAIN KESELURUHAN

KELAS KONTROL

No	77 1		Post	N Gain	N Gain
	Kode	Pre Test	Test	Skor	Persen
1	K1	70	88	0,60	60%
2	K2	84	90	0,38	38%
3	К3	78	78	0,00	0%
4	K4	84	76	-0,50	-50%
5	K5	80	78	-0,10	-10%
6	K6	74	88	0,54	54%
7	K7	82	90	0,44	44%
8	K8	64	82	0,50	50%
9	K9	40	86	0,77	77%
10	K10	82	86	0,22	22%
11	K11	52	90	0,79	79%
12	K12	58	60	0,05	5%
13	K13	74	95	0,81	81%
14	K14	74	86	0,46	46%
15	K15	60	78	0,45	45%
16	K16	84	52	-2,00	-200%
17	K17	52	80	0,58	58%
18	K18	72	80	0,29	29%
19	K19	74	86	0,46	46%
20	K20	82	82	0,00	0%
21	K21	58	86	0,67	67%
22	K22	84	86	0,13	13%
23	K23	58	84	0,62	62%
24	K24	42	95	0,91	91%
25	K25	68	74	0,19	19%
26	K26	82	80	-0,11	-11%
27	K27	64	96	0,89	89%
28	K28	84	86	0,13	13%
	Rata		0,29	29%	

Contoh perhitungan manual uji n gain nomor 1:

$$(g) = \frac{\text{skor posttest-skor pretest}}{\text{skor ideal-skor pretest}}$$
$$= \frac{88-70}{100-70}$$
$$= \frac{18}{30} = 0.6$$

ANGKET PENLAIAN MEDIA OLEH SISWA

ANGKET PENILAIAN E-ARODUE BERBANTUAN WOLFRAM MATHEMATICA PADA MATERI SISTEM PERSAMAAN LINEAR DUA VARIABEL

UNTUK PENGGUNA

Nama

: Andharisto affarenza

Kelas

: 8 F

A. Petunjuk Pengisian

Penilaian ini dilakukan dengan memberi tanda "\" pada kolom yang sesuai dengan penilaian Anda untuk setiap butir dalam lembar penilaian dengan ketentuan sebagai berikut:

Skor 5 : sangat setuju (SS)

Skor 4 : Setuju (S)

Skor 3 : Ragu-Ragu (RG) Skor 2 : Tidak Setuju (TS)

Skor 1 : sangat tidak setuju (STS)

B. Aspek Penilian

El ----

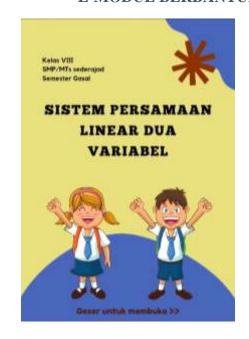
Kriteria			Nila	ú	
	SS	S	RG	TS	STS
. E-modul dapat diakses dengan mudah	1				
Petunjuk penggunaan jelas		1			
S. Saya merasa senang menggunakan e-modul		V			
. E-modul ini merupakan sesuatu yang baru bagi saya	V				
 E-modul membuat keingintahuan saya meningkat 		1			
Pembelajaran menggunakan e-modul berbantuan Wolfram Mathemaica membantu saya untuk lebih memahami materi Sistem Persamaan Linear Dua Variabel	V				
. E-modul ini membuat saya tertarik untuk belajar		V			
. Saya dapat memahami isi dari e-modul dengan baik	1				
. Terdapat materi dan video penjelasan dalam e-modul	V				

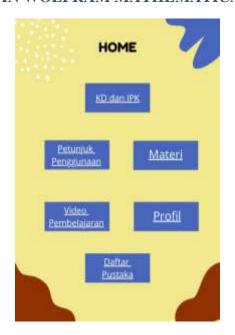
yang membantu dalam belajar	V		
10. Materi dapat diakses dengan mudah		\vee	
 Video penjelasan dapat diakses dengan mudah 	1		
12. Penempatan tombol praktis dan mudah digunakan	V		
 E-modul fleksibel dapat digunakan di komputer ataupun android 		V	
14. E-modul dapat diakses kapan saja	J		
15. E-modul dapat diakses dimana saja		V	

Lampiran 36 b

HASIL PENILAIAN MEDIA OLEH SISWA

Kriteria	skor
1. E-modul dapat diakses dengan	5,4,5,5,5,5,4,5,5,5,5,4,5,4,5,4,5,5,5,4,
mudah	5,4,4,5,5,5,5,5,4
2. Petunjuk penggunaan jelas	4,5,4,4,5,5,5,4,4,5,5,4,4,5,5,5,5,5,4,
	5,4,4,4,4,5,5,5
3. Saya merasa senang menggunakan	4,5,4,4,5,5,5,4,4,5,4,4,5,5,5,5,5,5,5,5
e-modul	5,5,5,5,5,5,5,4
4. E-modul ini merupakan sesuatu	5,5,5,5,4,5,4,5,5,4,5,5,4,4,4,5,5,4,4,4,
yang baru bagi saya	5,4,4,5,5,5,4,4,5
5. E-modul membuat keingintahuan	4,4,4,4,5,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5
saya meningkat	4,5,5,4,4,4,5,5,4
6. Pembelajaran menggunakan <i>e</i> -	5,4,5,5,5,4,4,5,4,5,5,5,4,4,5,4,4,4,5,5,4,
modul berbantuan Wolfram	5,4,4,5,5,5,5,5,5
Mathemaica membantu saya untuk	
lebih memahami materi Sistem	
Persamaan Linear Dua Variabel	
7. E-modul ini membuat saya tertarik	4,4,5,5,5,5,5,4,4,4,4,5,4,5,4,4,4,4,4,5,5,
untuk belajar	4,5,4,5,5,4,5,4,4
8. Saya dapat memahami isi dari e-	5,5,4,4,4,4,5,4,5,5,5,5,5,5,5,5,5,5,5,5
modul dengan baik	5,5,4,4,4,5,5,4,5
9. Terdapat materi dan video	5,5,5,5,5,4,4,5,5,5,5,5,5,5,5,4,4,4,5,5,4,
penjelasan dalam e-modul yang	5,4,5,5,5,5,5,4,4
membantu dalam belajar	
10. Materi dapat diakses dengan	4,4,5,5,4,4,4,5,4,5,5,5,4,4,5,5,4,5,5,5,5,
mudah	5,5,4,4,4,5,4,4
11. Video penjelasan dapat diakses	5,5,4,4,4,5,5,4,5,5,4,4,5,4,5,4,5,4,5,5,
dengan mudah	5,4,5,4,4,5,5,5,5
12. Penempatan tombol praktis dan	5,4,5,5,5,5,4,4,4,4,4,5,4,5,5,4,4,4,4,5,4,


mudah digunakan	5,4,4,5,5,5,4,5,5
13. E-modul fleksibel dapat digunakan	4,5,4,4,5,4,4,5,5,5,5,4,5,4,4,4,4,4,5,4,5,
di komputer ataupun android	4,5,4,4,4,5,4,4
14. E-modul dapat diakses kapan saja	5,5,4,4,4,5,5,4,5,4,5,4,5,5,5,5,5,5,5,5
	4,4,5,5,5,5,5,4,4
15. E-modul dapat diakses dimana saja	4,4,5,5,5,5,5,4,4,5,5,5,4,4,5,5,5,5,5,5
	5,5,4,5,5,4,4,5,5
Total skor	2062
Persentase keseluruhan	92%


Perhitungan manual persentase keseluruhan :

$$p = \frac{\sum jawaban \times bobot\ tiap\ pilihan}{n \times bobot\ tertinggi} \times 100\%$$
$$= \frac{2062}{15 \times 150} \times 100\%$$
$$= \frac{2062}{2250} \times 100\% = 92\%$$

Lampiran 37

E-MODUL BERBANTUAN WOLFRAM MATHEMATICA

KOMPETENSI DASAR

3.5 Menjelaskan sistem persamaan linear disa Voriabel dan penyelesaiannya yangdihubungkan dengan masalah kontelastual 4.5 Menyelesaikan masalah yang berkaltan dengan sistem persamaan linear dua variabel

3.5.1 Siswa dapat mengidentifikasi konsep persamaan linear dua variabel 3.5.2 Siswa dapat membuat model matematika persamaan linear dua variabel 4.5.1 Siswa dapat menyelesaikan masalah kontekstual yang berkaitan dengan sistem persamaan linear dua variabel dengan menggunakan salah satu metode

TUJUAN

Melalui kegiatan pembelajaran eiswa dapat mengidentifikasi. Persamaan tinear Dua Variabel dengan teliti, siswa dapat menyusun model matematika dari masalah sehari-hari yang berkaitan dengan Sistem Persamaan Linear Dua Variabel serta siswa dapat menyelesalakan permasalahan kontektual dengan tepat dan penuh pagaung jawab. wagung jawab

PETUNJUK PENGGUNAAN

- 1. klik link untuk dapat mengakses e-madul ini
- 2. Geser pada halamam awal untuk membuka e-modul
- 3. klik link youtube yang tersedia untuk mengakses
- 4 klik link modul untuk bisa mengakses materi yang berbantuan wolfram mathematica
- 5. pelajari dengan teliti setiap materi yang disedikan
- à setelah memahami materi dan contoh-contoh soal, kerjakan latihan yang diberikan oleh gurumu

Lampiran 38

 ${\bf Tabel\ niali\ r\ } {\it product\ moment}$

N	Taraf Si	gnifikansi	N	Taraf Signifikansi		
	5 %	1%		5 %	1 %	
3	0,997	0,999	38 39	0,320 0,316	0,413	
5	0,878	0,959	40	0,312	0,403	
6	0,811	0,917	41	0,308	0,398	
7	0,754	0,874 0,834	42 43	0,304	0,393	
9	0,666	0,798	44	0,297	0,384	
10	0,632	0,765	45	0,294	0,380	
11	0,602	0,735	46	0,291	0,376	
12	0,576	0,708	47	0,288	0.372	
13	0,553	0,684	48	0,284	0,368	
14	0.532	0,661	49	0,281	0,364	
15	0.514	0.641	50	0,279	0,361	
16	0.497	0,623	55	0,266	0,345	
17	0.482	0,606	60	0,254	0,330	
18	0.468	0,590	65	0,244	0,317	
19	0,456	0,575 0,561	70 75	0,235	0,306	
20	0,444	0,549	80	0,220	0,286	
21	0,433	0,537	85	0,213	0,278	
23	0,413	0,526	90	0,207	0,270	
24	0,404	0,515	95	0,202	0,263	
25	0,396	0,505	100	0,195	0,256	
26	0,388	0,496	125	0,176	0,230	
27	0,381	0,487	150	0,159	0,210	
28	0,374	0,478	175	0,148	0,194	
29	0,367	0,470	200	0,138	0,181	
30	0,361	0,463	300	0,113	0,148	
31	0,355	0,456	400	0,098	0,128	
32	0,349	0,449	500	0,088	0,115	
33	0,344	0,442	600	0,080	0,105	
34 35	0,339	0,436	700 800	0,074	0,097	
36	0,329	0,424	900	0,065	0,086	
37	0,325	0,418	1000	0,062	0,081	

Lampiran 39

Tabel nilai kritis uji liliforse

Ukuran			Taraf Ny	ata (Cr)	
Sampel	0,01	0,05	0,10	0,15	0,20
n = 4	0,417	0,381	0,352	0,319	0,300
5 6 7 8 9	0,405	0,337	0,315	0,299	0,285
6	0,364	0,319	0,294	0,277	0,265
7	0,348	0,300	0,276	0,258	0,247
8	0,331	0,285	0,261	0,244	0,233
	0,311	0,271	0,249	0,233	0,223
10	0,294	0,258	0,239	0,224	0,215
11	0,284	0,249	0,230	0,217	0,206
12	. 0,275	0,242	0,223	0,212	0,199
13	0,268	0,234	0,214	0,202	0,190
14	0,261	0,227	0,207	0,194	0,183
15	0,257	0,220	0,201	0,187	0,177
16	0,250	0,213	0,195	0,182	0,173
17	0,245	0,206	0,289	0,177	0,169
18	0,239	0,200	0,184	0,173	0,166
19	0,235	0,195	0,179	0,169	0,163
20	0,231	0,190	0,174	0,166	0,160
25	0,200	0,173	0,158	0,147	0,142
30	0,187	0,161	0,144	0,136	0,131
n > 30	1,031	0,886	0,805	0,768	0,736
50	√n	√n	Vn	√n	Vn

Sumber: Conover, W.J., Practical Nonparametric Statistics, John Wiley & Sons, Inc., 1973.

Lampiran 40

Tabel nilai kritik uji bartlet

	Number of Populations, 4										
п.	2	,	4	3		7		9	10		
3	3121	30158	3173	3299					- 6		
4	4780	46/93	4803	4921	5028	5122	5204	.5277	534		
5	5845	5762	5850	3912	6045	6126	6197	6356	631		
6	6563	6483	6559	6646	6727	6798	6860	6914	10/04		
2	7075	7000	70m.1	7142	7713	7275	2339	7376	7.4		
5	7456	7387	7444	7512	7574	7629	1677	1719	775		
0	7751	76.66	2732	1798	2854	7903	7946	7984	NO.		
10	7954	7924	79.70	8025	8076	8121	8160	8194	9.7		
ir l	8175	8118	X160	8210	8257	8298	8333	#365	3.7		
12	#112	6280	#317	8164	8407	8444	8477	8506	2.5		
13	8465	8415	8450	8491	8533	X568	8558	86.75	97		
14	5578	8532	5364	55634	8641	8673	8701	8726	# 1		
12	1676	8612	8662	55/21	8734	1764	8790	3814	5.8		
16	1761	8720	X747	H7K2	10015	3843	Seca	2850	87		
12	33 %	5.195	6823	55.56	1556	8915	8936	8957	111		
1 .	6902	6565	8.0(4)	8921	1949	8975	8997	9016	(4)		
14	1961	89.55	E949	8979	9006	9030	9051	9069	-903		
20	1015	8950	9003	9031	9057	9(18)	9100	9117	91.		
21	9061	0030	9051	9078	9103	9124	9143	9160	91		
22	0106	9071	0095	9120	9144	9161	9183	.0199	921		
23	9146	9110	9135	9159	9152	9202	9219	9735	924		
24	9182	9153	9172	9195	9217	9736	19253	9267	928		
25	9216	9197	9205	9228	9249	9267	9285	9297	930		
26	9245	9210	9236	9258	9278	9296	9311	9125	933		
27	9275	9349	9255	9286	9305	9322	9317	9,150	936		
24	9301	4276	9292	9512	9135	V347	9361	9374	934		
29	9326	9301	9316	9110	9354	9370	9383	9196	940		
30	9348	9325	9340	9158	9376	9391	9494	9416	9436		
40	9513	9495	9506	9520	9533	9545	9555	9564	9523		
50	9612	9597	9606	9617	96.28	9637	9645	9612	56.58		
60	9671	9665	9672	96#1	9690	9698	9.7025	9710	9716		
84)	9758	9749	9754	9761	9768	9774	97.79	9783	9787		
100	9807	9799	9804	98079	9815	9819	2823	9827	98.30		

Tabel niali t

Titik Persentase Distribusi t (df = 1 - 40)

-	0.25	0.10	0.05	0.025	0.01	0.005	0.00
	0.50	0.20	0.10	0.050	0.02	0.010	0.003
1	1.00000	3.07768	6.31375	12.70620	31.82052	63.65674	318.30884
,	0.81650	1.58562	2 9 1999	4.30295	6.96456	0.92484	22 32712
3	0.76489	1.63774	2.35336	3.18245	4.54070	5.84091	10,21453
4	0.74070	1.53321	2.13185	2.77645	3.74695	4.60409	7.17318
5	0.72669	1.47588	2.01505	2.57058	3.36493	4,03214	5.89343
6	0.71756	1.43976	1.94318	2 44691	3.14267	3.70743	5.20763
7	0.71114	1.41492	1.69458	2.38462	2 99795	3.49948	4.78529
8	0.70639	1.39682	1.85955	2.30600	2.89646	3.35539	4.50079
9	0.70272	1.38303	1.83311	2.26216	2.82144	3,24954	4.29681
10	0.69981	1.37218	1.81246	2.22814	2.76377	3,16927	4.14370
11	0.69745	1.36343	1.79588	2.20099	2.71808	3.10581	4.02470
12	0.69548	1,35622	1,78229	2.17681	2,68100	3.05454	3.92963
13	0.69383	1.35017	1.77093	2.16037	2 65031	3.01228	3 85198
14	0.69242	1 34503	1.76131	2.14479	2.62449	2.97684	3.78739
15	0.69120	1.34061	1,75305	2.13145	2.60248	2 94671	2.73283
16	0.69013	1.33676	1.74588	2.11991	2.58349	2.92078	3,68615
17	0.68920	1.33338	1.73961	2.10982	2.56693	2.89823	3.64577
18	0 68836	1.33039	1.73406	2.10092	2.55238	2.87844	3.61048
19	0.68762	1.32773	1.72913	2.09302	2.53948	2.86093	3.57940
20	0.68695	1.32534	1.72472	2.08596	2.52798	2.84534	3.55181
21	0.68635	1.32319	1.72074	2.07961	2.51765	2.83136	3.52715
72	0.58581	1.32124	1.71714	2.07387	2.50832	2.81876	3.50499
23	0.68531	1.31946	1.71387	2.06866	2.49987	2.80734	3.48496
24	0.68485	1.31784	1.71088	2.06390	2.49216	2.79694	3.46678
25	0.68443	1.31635	1.70814	2.05954	2.48511	2.78744	3.45019
26	0.68404	1.31497	1.70562	2.05553	2.47863	2.77871	3.43500
27	0.68368	1.31370	1.70329	2.05183	2.47266	2.77068	3.42103
28	0.68335	1 31253	1 70113	2.04841	2 46714	2 76326	3.40816
29	0.68304	1.31143	1.69913	2.04523	2,46202	2.75639	3.39624
30	0.68276	1.31042	1.69726	2.04227	2.45726	2.75000	3.38518
31	0.68249	1.30946	1.69552	2.03951	2.45282	2.74404	
32	0.58223	1.30857	1.69389	2.03693	2.44868	2.73848	3.37490
33	0.68200	1.30774	1.69236	2.03452			3.36531
34	0.68177	1.30695	1.69092	2.03452	2.44479	2.73328	3.35634
35	0.68196	1.30621	1.68957	2.03224	2.44115	2.72839	3.34793
35	0.68137	1.30551			2.43772	2.72381	3,34005
37	0.68118	1.30551	1.68830	2.02809	2.43449	2.71948	3.33262
38	0.68100	1.30423	1.68709	2.02619	2.43145	2,71541	3.32563
39	0.68083	1.30364	1.68488	2.02439	2.42857	2.71156	3.3190
40	0.68067	1.30308	1.68385	2.02269	2.42584	2.70791	3.31279

Titik Persentase Distribusi t (df = 41 – 80)

Pr	0.25	0.10	0.05	0.025	0.01	0.005	0.001
di /	0.50	0.20	0.10	0.050	0.02	0.010	0.002
41	0.68052	1.30254	1.68288	2.01954	2.42080	2.70118	3.30127
42	0.68038	1.30204	1.68195	2.01808	2.41847	2.69807	3.29595
43	0.68024	1.30155	1,68107	2.01669	2.41625	2.69510	3 29089
44	0.68011	1.30109	1.68023	2.01537	2.41413	2 69228	3.28607
45	0.67998	1.30065	1.67943	2.01410	2.41212	2.68959	3.28148
46	0.67986	1.30023	1.67866	2.01290	2.41019	2 68701	3.27710
47	0.67975	1.29982	1.67793	2.01174	2.40835	2.68456	3.27291
48	0.67964	1.29944	1.67722	2.01063	2.40658	2.68220	3.26891
49	0.67953	1.29907	1.67655	2 00958	2.40489	2.67995	3.26508
50	0.67943	1.29871	1.67591	2.00856	2.40327	2.67779	3.26141
51	0.67933	1.29837	1.67528	2.00758	2.40172	2.67572	3.25789
52	0.67924	1.29805	1.67469	2.00665	2.40022	2.67373	3.25451
53	0.67915	1.29773	1.67412	2.00575	2.39879	2.67182	3.25127
54	0.67906	1.29743	1.67356	2.00488	2.39741	2.66995	3.24815
55	0.67898	1.29713	1.67303	2.00404	2.39608	2.66822	3.24515
56	0,67890	1.29685	1.67252	2.00324	2.39480	2.66651	3.24226
57	0.67882	1.29658	1.67203	2.00247	2.39357	2.66487	3.23948
58	0.67874	1.29632	1.67155	2.00172	2.39238	2.66329	3.23680
59	0.67867	1.29607	1.67109	2.00100	2.39123	2.66176	3.23421
60	0.67860	1.29582	1.67065	2.00030	2.39012	2.66028	3.23171
61	0.67853	1.29558	1.67022	1.99962	2.38905	2.65886	3.22930
62	0.67847	1,29536	1.66980	1.99897	2.38801	2.65748	3.22696
63	0.67840	1.29513	1.66940	1.99834	2.38701	2.65615	3.22471
64	0.67834	1.29492	1.66901	1.99773	2.38604	2.65485	3.22253
65	0.67528	1.29471	1.66864	1.99714	2.38510	2.65360	3.22041
66	0.67823	1.29451	1.66827	1.99656	2.38419	2.65239	3.21837
67	0.67817	1.29432	1.66792	1.99601	2 38330	2.65122	3.21639
68	0.67811	1.29413	1.66757	1.99547	2.38245	2.65008	3.21446
69	0.67806	1.29394	1.66724	1.99495	2.38161	2.64898	3.21260
70	0.67801		1.66691	1.99444	2.38081	2.64790	3.21079
		1.29376			A Library		
71	0.67796	1.29359	1.66660	1.99394	2.38002	2.64686	3.20903
72	0.67791	1.29342	1.66629	1.99346	2.37926	2.64585	3.20733
73	0.67787	1.29326	1.65600	1.99300	2.37852	2.64487	3.20567
74	0.67782	1.29310	1.66571	1.99254	2.37780	2.64391	3.20406
75	0.67778	1.29294	1.66543	1.99210	2.37710	2.64298	3.20249
76	0.67773	1.29279	1.66515	1.99167	2.37642	2.64208	3.20096
77	0.67760	1.29264	1.66488	1.99125	2.37576	2.64120	3 10010
78	0.67765	1.29250	1.66462	1.99085	2.37511	2.64034	3 19804
79	0.67761	1.29236	1.66437	1.99045	2.37448	2.63950	3.19663
80	0.67757	1.29222	1.66412	1,99006	2.37387	2.63869	3.19526

Lampiran 42

Dokumentasi pelaksanaan penelitian

(kelas uji coba)

(kelas eksperimen)

(kelas kontrol)

Lampiran 43

Surat permohonan ijin penelitian

UNIVERSITAS PGRI SEMARANG FAKULTAS PENDIDIKAN MATEMATIKA ILMU PENGETAHUAN ALAM DAN TEKNOLOGI INFORMASI

PROGDI. : PENDIDIKAN MATEMATIKA, BIOLOGI, FISIKA DAN TEKNOLOGI INFORMASI Jalan Lontar Nomor 1 (Sidodadi Timur) Telepon (024) 8316377 Fax. (024) 8448217 Semarang - 50125

: 0198/AM/FPMIPATI/UPGRIS/V/2022

Semarang, 27 Mei 2022

Lamp

: 1 (satu) berkas

Perihal : Permohonan ijin penelitian

Kepada

Yth. Kepala SMP Negeri 2 Weleri

di Tempat

Kami beritahukan dengan hormat, bahwa mahasiswa kami :

: GRAHITA SUKMA DEWI

NPM

: 18310075

Fak. / Program Studi

: FPMIPATI / Pendidikan Matematika

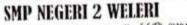
Akan mengadakan penelitian dengan judul:

PENGEMBANGAN E-MODUL BERBANTUAN WOLFRAM MATHEMATICA UNTUK MENINGKATKAN KEMAMPUAN BERPIKIR KRITIS SISWA

Sehubungan dengan hal tersebut kami mohon perkenan Bapak/Ibu memberikan ijin mahasiswa tersebut untuk melakukan penelitian.

Atas perkenan dan kerjasama Bapak/Ibu, kami sampaikan terima kasih.

a.n. D e k a n, Wakil Dekan Kemahasiswaan,


Adminiştrasi dan Keuangan

Supandi, S.Si., M.Si. NPP 097401245

Surat keterangan pelaksanaan penelitian

PEMERINTAH KABUPATEN KENDAL DINAS PENDIDIKAN DAN KEBUDAYAAN

Alamat : Jalan Wahari No 2 Rewonari - Kendal 19 (0294) 641675 Akreditasi A, NPSN : 20321878, Famil - suppreferi?/www.ml.com

SURAT KETERANGAN

Nomot: 422.5 /410/SMP

Yang bertanda tangan di bawah ini ;

> Nama

: Drs. KUNCORO PUJIWARTO

> NIP

: 196805251998021003

> Jabatan

: Kepala Sekolals

> Unit Kerja

: SMP Negeri 2 Weleri

Menerangkan bahwa mahasiswa tersebut:

> Nama

: GRAHITA SUKMA DEWI

> NPM

: 18310075

Fak/Program Studi : FPMIPATI / Pendidikan Matematika

Perguruan Tinggi : Universitas PGRI Semarang

Telah melakukan penelitian di SMP Negeri 2 Weleri pada tanggal 31 Mei - 16 Juni 2022 dengan judul penelitian "PENGEMBANGAN E-MODUL BERBANTUAN WOLFRAM MATHEMATICA UNTUK MENINGKATKAN KEMAMPUAN BERPIKIR KRITIS SISWA"

Demikian yang berkepentingan harap maklum.

Roycosari, 27 Juni 2022

Kepala Sekolah,

SMPN 2

DIS KUNCORO PUHWARTO NE 196805251998021003